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We demonstrate that upstream swimming of sperm emerges via an orientation disorder-order transition.
The order parameter, the average orientation of the sperm head against the flow, follows a 0.5 power law
with the deviation from the critical flow shear rate (γ − γc). This transition is successfully explained by a
hydrodynamic bifurcation theory, which extends the sperm upstream swimming to a broad class of near
surface microswimmers that possess front-back asymmetry and circular motion.
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Microswimmers, including bacteria, copepods, and
sperm, swim against fluid flows when seeking food or
in order to reproduce [1–3]. For a successful fertilization,
mammalian sperm must travel a long and complex female
reproductive tract to reach the egg. Although much of the
work on directed sperm migration has been focused on
chemotaxis [4], recent developments show that physical
forces actively regulate sperm migration [5–7]. Notably,
Ref. [5] demonstrated that sperm migrate against fluid
flows both ex vivo and in vitro, and Ref. [7] showed that
hydrodynamic forces are responsible for sperm upstream
swimming behavior. In this Letter, we report the existence
of a finite shear rate required for the onset for upstream
swimming in the context of a hydrodynamic bifurcation
theory. We also show that hydrodynamic interaction of a
front-back asymmetric swimmer with the wall is a suffi-
cient criterion for upstream rotation.
Experiments were carried out in a wide microfluidic

channel, and fluid flows were driven by a syringe pump
[see Fig. 1(a)]. Swimming bull sperm were used as a model
system in our experiments. In low viscosity fluids, bull
sperm swim with a self-rolling [counterclockwise (CCW)
seen from in front of the sperm head] (SMovie1 in [8])
along the long axis of the sperm head [22,23] with a rolling
rate of approximately 10 Hz at 38.5 °C (bovine core body
temperature). Images of the swimming sperm [Fig. 1(b),
also SMovie2 in [8]] were recorded and postprocessed to
obtain sperm trajectories [Fig. 1(c)] and orientations.
Figure 1(c) shows that most sperm execute clockwise
(CW) circular trajectories on the bottom surface of the
channel (viewed from above). For consistency, all the near
surface sperm swimming movies were taken from above
the surface.
Sperm, along with many other “pusher microswimmers”

such as Escherichia coli [24–26] or Caulobacter crescentus
[27], have the tendency to swim near surfaces [28] and
sidewalls in microfluidic channels [6,29,30]. This is clearly
seen in Fig. 1(d) and SMovies 3 and 4 in the Supplemental

Material [8], where sperm are shown to swim along a
sidewall regardless of the angle at which they hit thewall. In
our experiments, sperm rapidly contacted and continued
swimming along the upper or lower surfacewhen introduced

FIG. 1 (color online). Sperm structure, trajectory chirality, and
near-surface swimming. (a) Schematic of experimental setup.
Each bull sperm has a paddle-shape head, with approximate
dimensions of 10 μm long, 5 μm wide, and roughly 1 μm thick.
The head is directly connected to a single flagellum that is about
50–60 μm long and tapers from 1 μm in diameter at the
connection to 200 nm at the tail end. Mean swimming speed is
close to 120 μm=s. Sperm traveling along the surfaces of a
microfluidic channel with 2.47 mm width and 120 μm height.
Fluid flow is applied in the −x̂ direction. (b) A micrograph
(570 × 426 μm) of sperm swimming along the lower surface of
the central portion of the microfluidic channel. Scale bar: 100 μm.
(c) Trajectories (1–6.30 s long) of sperm in the absence of the
flow. Each colored line is a sperm track that ends at the black dot.
CW chirality is seen in the trajectories. Scale bar: 100 μm.
(d) Trajectories (1.78 s long) of 30 sperm swimming toward
the side wall of the microfluidic channel, and the coordinate (0,0)
marks the point where the sperm hit the side wall. The sperm
continue to move along the sidewall (or x axis). Red (black) dots
are starting (ending) positions of the tracks. Scale bar: 25 μm.
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into awidemicrofluidic channel [Fig. 1(a)]. For consistency,
all data presented herewere taken from the sperm swimming
along the lower surface of the channel [6].
Sperm were seen to reorient and swim against the flow as

the flow rate exceeded a critical value (Fig. 2). This is
clearly demonstrated by the sperm head orientations
[Figs. 2(b) and (c)], the sperm swimming trajectories at
various flow rates [Figs. 2(d) and (e)], and SMovie2 and 5
in [8]. In the absence of the flow or when the shear rate was
below the critical value, sperm swam in all directions
[Figs. 2(b) and (d)], and each sperm followed a clockwise
(CW, viewed from above) circling trajectory. When the
shear rate exceeded the critical value, sperm swam pre-
dominantly upstream in nearly straight lines [Fig. 2(e)].
It should be noted that near the surface sperm were seen to
swim in CW circles with a characteristic curvature
ð3.0� 0.4Þ × 10−3 μm−1 below the flow onset shear rate
[Fig. 1(c), Fig. 2(d) and SMovie 2 in [8]]. This observation
is consistent with previous reports for sea urchin, bovine,
and human sperm when swimming near a surface
[5,7,31,32]. In rare cases [e.g., 3 trajectories out of 53 in
Fig. 2(d)], sperm circled with a CCW chirality, and those
were found to swim via planar beating of the flagellum, a

phenomenon that is commonly observed in sperm swim-
ming in viscous fluids [7,23,31]. In this Letter, we focus on
the self-rolling sperm motility in Newtonian fluids,
although the theory proposed here can be applied to the
planar beating sperm in viscous fluids as well.
The onset of upstream swimming can be understood

based on the hydrodynamic model presented in the
Supplemental Material [8]. Based on the linearity of
Stokes flow we can superimpose the swimming induced
rotation with that due to the imposed fluid flow. Using
linearity, symmetry, the observation that sperm swim
parallel to the wall, and the fact that the imposed flow
on the scale of a sperm is a simple shear flow, the change of
sperm orientation s can be written as

_si ¼ ωεijksjnk − νðδij − sisjÞnk
∂uj
∂xk ; ð1Þ

where ω is the angular frequency corresponding to the CW
trajectories, ν is a dimensionless constant related to the
front-back asymmetry of the swimmer [33], uðxÞ is the
imposed flow field, and n is the unit vector normal to
the surface. Equation (1) yields

_θ ¼ −ω − γν sin θ; ð2Þ
where θ is the angle of the sperm relative to the upstream
direction and γ is the shear rate at the wall. For a given
channel geometry, the volumetric flow rate q and the flow
speed at a fixed distance from the wall u are proportional to
the shear rate γ.
The physical mechanism leading to sperm rotation is

illustrated in Fig. 3(a). In the absence of flow, the sperm
body experiences a net resistive force due to the interaction
with the wall, FR, near the wall as a result of self-rolling. A
special case can be lubrication force. This force leads to a
torque that is responsible for the sperm right-hand circling
trajectory [Fig. 2(d)] with a constant angular velocity ω
[34]. In the presence of the flow (but no cell propulsion),
the sperm head and flagellum are carried downstream by
the flow, but the head experiences a larger resistive force
FF, due to the hydrodynamic interaction with the wall, than
does the flagellum. This larger resistance leads to a torque
orienting the cell upstream. Based on linear superposition,
the rotations due to FR and FF can be superimposed to
yield Eq. (2). A calculation for a simple model swimmer [8]
consisting of a spherical head and straight cylindrical
flagellum leads to a rotational parameter ν ¼ 0.07 which
is within a factor of 2 of the experimental value of
ν ¼ 0.118� 0.005. Reference [7] derived a flow-induced
rotation rate consistent with Eq. (2) by considering the
shear-induced rotation of a spiral flagellum with one end
fixed at the wall, although they did not specify a physical
mechanism (e.g., cell-wall resistance) for this constraint.
Interestingly, the above equation is an overdamped and

forced oscillator equation (also known as Adler equation)
[35,36]. The solution to the above equation is a classical

FIG. 2 (color online). Emergence of upstream swimming.
(a) Sperm head orientation is represented by the unit vector s,
where θ is the angle with respect to the x axis. Scale bar:
15 μm. (b) and (c): Micrograph (422.5 × 422.5 μm) of
sperm swimming in the absence (presence) of the flow
(4.5 μL=min). Yellow arrows denote the sperm head orientation.
Scale bar: 100 μm. (d) and (e): Trajectories of ∼50 sperm, each
is sampled at 8.91 Hz and 2.81 s long, when there is no flow (d),
and when a critical flow rate is exceeded (e). Clockwise (CW)
chirality (with an exception of ∼6% of the sperm) is demonstrated
in (d). Emergence of directional swimming pattern is clearly
shown in (c) and (e). Flows are applied in the −x̂ direction. Scale
bar: 100 μm.
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saddle-node bifurcation [Fig. 3(b)]. Using Eq. (2), we show
that there exists a critical shear γc, where γc ¼ ω=ν. Below
γc, no steady state solution exists. The CW circling bias
dominates, the sperm swim clockwise following right-hand
circles, and stay in bound states. Above γc, there exist two
steady states (or fixed points), θ0 and −π − θ0, where
sin θ0 ¼ −ω=γν and −π=2 < θ0 < π=2. Linear stability
analysis (see the next section) around the two fixed points
shows that θ0 is a stable fixed point [37], while −π − θ0 is
an unstable fixed point. This means that the system stays on
the fixed point θ0 above the onset point, which predicts an
emergence of the orientation order of upstream swimming
at the critical shear rate.
The saddle-node bifurcation described above is verified

in our experiments [Fig. 3(b)]. Using the images [Figs. 2(b),
2(c)], we made precise measurements of sperm head
orientation θ as a function of flow rate near the transition
point [Fig. 3(b)]. A random orientation is seen from the
distribution of θ, pðθÞ for flow shear rates below γc and a
preferred swimming direction θ0, in the form of a peak in
pðθÞ, emerges when shear rate is above a critical value [8].
For those showing a preferred swimming direction, we then
fit the distribution pðθÞ to a Gaussian curve near the peak

region [8], which provides us the measured θ0. The
experimentally measured 1= sin θ0 is proportional to the
volume flow rate q orwall shear γ as predicted by Eq. (2) [8].
A linear fit to the data gives us the experimental onset point
qc ¼ 1.13� 0.03 μL=min, or γc ¼ 3.03� 0.08 1=s for
upstream swimming. It remains to be explored whether
the female reproductive tract uses this transition to selec-
tively orient sperm upstreamduring estrus, as there are as yet
no reported flow rate measurements within the bovine
reproductive tract.
Further characterizing the transition behavior, we found

that the emergence of upstream swimming is continuous
[Fig. 4(a)], following a 0.5 power-law scaling both in
experiments and theory. Here, we define an order parameter
hsxi, the x component of the average orientation vector of
each sperm hsi [38], which varies from 0 for isotropic
orientation distribution to 1 for perfect alignment in the
upstream orientation.Our experimental data show that hsxi ∼
ðγ − γcÞβ with an exponent β of 0.53� 0.05 [Fig. 4(a)], a
value typically found in supercritical bifurcations of dynamic
systems [39]. We note here that the sperm orientation jhsij
also exhibits an orientation disorder-order transition [8].
The hydrodynamic equation [Eq. (2)] can describe the 0.5

power scaling law shown in Fig. 4. At high Péclet numbers
Pe ¼ ω=Dr rotary diffusion is negligible, and Eq. (2)
provides a dynamic equation for the sperm orientation.
Here, we perform a linear stability analysis around the fixed
point θ0 ¼ θ0 þ ε, where ε is small; Eq. (2) can bewritten as

dε
dt

¼ −γν cos θ0ε:

FIG. 4 (color online). Onset of upstream swimming via a
continuous transition with a 0.5 power law. (a) The average
value of sperm head orientation unit vector along the x direction
(or against the flow direction) hsxi versus shear rate γ. Red dots
are experimental measurements, red solid line is the solution of
the Fokker-Planck equation, and dashed line shows the results of
Langevin simulation taking into account the wiggling motion.
Error bars show standard errors of the mean. Inset: a power law
with exponent of 0.53� 0.05 is observed above γc for measured
hsxi versus the γ curve. The black dashed line is a guideline with
an exponent of 0.5. (b) Numerical solution of the Fokker-Planck
equation showing that the transition curve becomes steeper with
increasing Péclet number (Pe). In the high Pe asymptotic limit, it
approaches the black dashed line described by

ffiffiffi
2

p ðγ − γcÞ1=2.

FIG. 3 (color online). A hydrodynamic model for upstream
microswimmers and saddle-node bifurcation diagram. (a) Force
diagram of a near surface swimmer subjected to shear flow. Left:
Forces due to swimming. When rolling near a surface, the sperm
head experiences a net resistive force (e.g., lubrication force) that
creates a torque responsible for the CW trajectories observed in
Fig. 2(d). Note the propulsion force (FP) and the drag (FD) due to
the sperm swimming motion do not contribute to the torque.
Right: Forces due to fluid flow. Sperm experiences a near wall
resistive force that is opposite to the direction of the flow.
Because of the front-back asymmetry of the sperm, the head
experiences a larger force than its tail, which leads to a torque that
orients the sperm upstream. Note that shear is required because
both the fluid flow and the no-slip boundary condition are needed
for the near wall resistive force to exist. (b) Diagram for a saddle-
node bifurcation (dots: experiments; lines: theory). No fixed point
solution can be found when γ < γc. At γ ¼ γc, a neutral fixed
point solution first shows at θ ¼ −π=2. When γ > γc, two fixed
point solutions emerge symmetrically on both sides of the θ ¼
−π=2 line, one stable θ0 which falls in the range −π=2 < θ0 <
π=2 and one unstable −π − θ0.
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In order for the fixed point to be stable, γν cos θ0 needs
to be greater than 0. Since γ and ν are both positive,
cos θ0 > 0 in the range of −π=2 < θ0 < 0. The stable
solution θ0 predicts that sperm swim against the flow.
We next examine how hsxi will scale with a shear rate

around the transition point. We assume γ ¼ γc þ δ. At
high Pe,

sx ¼ cos θ0 ¼
�
1 − ω2

γ2ν2

�
1=2

¼
�
1 − ω2

γ2cν
2
ð1þ δÞ−2

�
1=2

≅ ð2δÞ1=2:

Therefore, the separation of the fixed points and their
distance from the symmetry plane (plane perpendicular to
the flow direction) are proportional to ðγ − γcÞ0.5. This
scaling accounts for the dependence of the order parameter
on the flow shear.
A more complete description of the transition is obtained

using the stochastic Adler equation, i.e., Eq. (2) with the
addition of a noise term that takes into account a rotational
diffusivityDr [8]. The sperm orientation distribution can be
obtained from numerical solutions of the Fokker-Plank
(FP) equation or stochastic Langevin simulations for
various value of the Péclet number Pe ¼ ω=Dr [8,40].
The two methods yield comparable results [8], and the
transition curve from the FP equation is shown in Figs. 4(a)
and 4(b), which predicts the 0.5 power law at the high Pe
asymptotic limit, reminiscent of avoided critical behaviors
[41]. This solution neglects the wiggling motion of the
sperm head, which increases the stability of the swimming
as shown by the result from Langevin simulations [dashed
red line in Fig. 4(a)].
We note here that the experiments and theory of Ref. [7],

like those in our Letter, show that sperm upstream swim-
ming is caused by hydrodynamic effects. However, there are
two important differences between our work and Ref. [7].
First, by considering the competition between the circling
motion of the cells and the rotation induced by the flow
induced near wall resistive force, we have identified a
critical shear rate needed for upstream swimming to occur.
The theory of Ref. [7] considered the sperm swimming to be
random in the absence of the flow and did not lead to an
onset point from circling to directed upstream swimming.
Second, we show that upstream rotation will occur for any
front-back asymmetric microswimmers interacting hydro-
dynamically with a surface, so that upstream swimming
would be a general phenomenon [1-3,5-7,42] not requiring
the chiral flagellum shape assumed in Ref. [7].
We have demonstrated that the onset of upstream swim-

ming can be described by a saddle-node bifurcation in both
experiments and theory. The hydrodynamic theory proposed
here revealed a simple physical mechanism responsible for
upstream swimming, that is—the near wall resistive forces
experienced by the near surface swimmers in the presence of

flow. The bifurcation theory brings two important insights
into the problem of upstream swimming. First, it extends the
phenomenon of sperm upstream swimming to a broad class
of microswimmers (e.g., bacteria) that possess front-back
asymmetry and execute circular motion near a surface. They
will all swim against the flowswith an onset. Second, it links
the onset of upstream swimming to a large class of critical
behavior problems through the Adler equation, which arises
in many fields of engineering and science; they include
phase locking of electronic signals in electronics [35],
synchronization of flagella beating in biology [36], and
current occurrence in Josephson junctions in condensed
matter physics [43]. Knowledge gained in learning the
physical science system now can be applied for the studies
of upstream swimmers [35].
From a physical science perspective, this work provides

the first example in a living system where an orientationally
ordered state emerges via a saddle-node bifurcation when
subjected to a shear flow. This is in contrast to the class of
nonlinear pattern forming systems such as Taylor-Couette
fluid flows where bifurcation theories have been used
successfully [39]. In both cases, shear stress leads to the
emergence of order.We emphasize that the emergence of the
order reported here comes from the hydrodynamic inter-
action of each sperm cell with the flow shear at the wall and
it differs fundamentally from collective behavior arising in
some systems due to particle-particle interactions. From a
biology perspective, this work highlights the importance of
physical forces and the existence of a hydrodynamic
transition in regulating sperm upstream swimming events.
It suggests that the coevolution of sperm and the female
reproductive tract may have fine-tuned the motility param-
eters of sperm and flow rate in the female tract, such that the
female tract gains control over sperm migration and directs
sperm to the fertilization site during estrus. No mechano-
sensing is necessary for sperm upstream swimming. Such
understanding will help the development of novel assisted
reproductive technologies and contraceptives.
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