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Electromechanical alternans is a beat-to-beat alternation in the strength of contraction of a cardiac cell,
which can be caused by an instability of calcium cycling. Using a distributed model of subcellular calcium
we show that alternans occurs via an order-disorder phase transition which exhibits critical slowing down
and a diverging correlation length. We apply finite size scaling along with a mapping to a stochastic coupled
map model, to show that this transition in two dimensions is characterized by critical exponents consistent
with the Ising universality class. These findings highlight the important role of cooperativity in biological
cells, and suggest novel approaches to investigate the onset of the alternans instability in the heart.

DOI: 10.1103/PhysRevLett.114.108101 PACS numbers: 87.19.Hh, 05.70.Fh, 87.16.Xa

When a cardiac myocyte is rapidly paced by a periodic
stimulus it is known to exhibit complex dynamics of both
cell membrane potential and intracellular calcium (Ca).
A common transition is from a periodic response to
alternans, where the duration of the action potential (AP)
and the Ca transient alternates from one beat to the
next [1–3]. This phenomenon has been studied extensively
since it is known that patients diagnosed with T-wave
alternans, the resulting beat-to-beat alternation in the shape
of the electrocardiogram (ECG), present a higher risk of
suffering life-threatening arrhythmias [3,4]. Earlier work
showed that alternans could arise from a period-doubling
bifurcation associated with the kinetics of ion channels
regulating themembrane potential [3]. However, experimen-
tal studies revealed that alternans may also appear due to an
instability in intracellular Ca, independently of the dynamics
of voltage [5]. Global deterministic models of the average
subcellular Ca concentration, also explained alternans as a
consequence of a period doubling bifurcation in the dynam-
ics of Ca cycling [6]. These studies overlooked, however, the
stochastic nature of Ca signaling at the ion channel level.
Recently, several authors have studied the spatiotempo-

ral dynamics of subcellular Ca during alternans [7–9]. In
particular, Restrepo et al. [7] developed a detailed model of
the three dimensional distribution of Ca signaling and
showed that rapid pacing induced Ca alternans. This
finding suggested that nonlinearities in the kinetics of
Ca signaling proteins might be the underlying cause for
alternans. In an important study, Rovetti et al. [10]
developed a comprehensive theory of Ca alternans referred
to as the “3R theory,” which attributed alternans to the
combination of the underlying stochasticity of Ca regula-
tion, the regenerative recruitment of Ca sparks due to
nearest neighbor interactions, and refractoriness in the Ca
response. This result is important since it demonstrated that
Ca alternans can be a direct consequence of the collective
behavior of local stochastic units.

In this Letter we use a detailed model of stochastic Ca
cycling to show that the transition from regular Ca cycling
to alternans occurs via an order-disorder phase transition
consistent with the Ising universality class. We demonstrate
that this transition follows from known features of the Ca
cycling architecture, such as the close positioning of
signaling channels in microdomains, and the coupling
between signaling units due to Ca diffusion. In particular,
we demonstrate that these far-from-equilibrium biological
systems exhibit features that can be described using
equilibrium statistical mechanics, where stochasticity at
the ion channel level serves the role of temperature, while
cellular diffusion leads to spatial cooperativity.
Phase transition in a detailed model of Ca cycling.—The

Ca signaling architecture [Fig. 1(a)] is designed so that
changes in membrane voltage can initiate signal trans-
duction inside the cell. A cardiac cell consists of thousands
of similar domains, referred to as Ca release units (CaRUs),
where voltage gated Ca channels (LCC) induce Ca release
due to a nearby cluster of Ryanodine receptor (RyR)
channels which control the flow of Ca sequestered within
the sarcoplasmic reticulum (SR). RyR channels open in a
Ca dependent manner [11] and this property ensures that a
LCC channel opening in the immediate vicinity induces an
autocatalytic release of Ca from the RyR cluster, referred to
as a Ca spark [11]. Under normal conditions several
thousand sparks are triggered in the cell and the Ca released
summates to form the global Ca transient [12].
To explore the collective dynamics of these signaling

domains we first note that CaRUs in ventricular myocytes
are distributed along planes perpendicular to the longi-
tudinal axis of the cell, called Z planes. Each Z plane is
effectively a two-dimensional (2D) network of CaRUs. We
therefore study the dynamics of Ca cycling in an L × L
array of signaling units [Fig. 1(b); full details of the model
are given in the Supplemental Material [13]]. The local
signal transduction is captured via a direct simulation
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of 1–5 LCC channels in close proximity to 10–100 RyR
channels. Here, each channel is modeled by simulating the
stochastic channel transitions between states of experimen-
tally derived Markovian schemes [Fig. 1(c) and [13]].
These junctions are coupled via diffusive currents in the
cytosol and SR. Then, we pace the array of signaling units
using an AP clamp. Indeed, we find that when our system is
paced at a fast cycle length ðTÞ then the Ca transient
averaged over all units exhibits an alternating beat-to-beat
sequence. In Fig. 1(d) we show a representative trace
of the whole cell average Ca transient, defined as
ci ¼ ð1=L2ÞPkl c

kl
i , demonstrating Ca transient alternans

similar to that observed experimentally [5]. We also plot the
local Ca concentration within the dyadic junction ckld for
three representative compartments, showing that the local
response is stochastic and can exhibit stereotypical Ca
spark events (S), or nonsparking events (NS) where
the local autocatalytic release fails or is abbreviated.

In Fig. 1(e) we show the alternans bifurcation of the steady
state average peak Ca transient (and jSR concentration) as a
function of pacing rate T.
To describe the transition to alternans in a cardiac cell we

first define a local order parameter that gives a measure of
the phase of alternans in different parts of the cell. Inspired
by previous work on the analysis of phase transitions in
chaotic coupled map lattices [22], we use

mklðnÞ ¼ sgnfð−1Þn½ckljsrðnÞ − ckljsrðn − 1Þ�g
¼ sgn½ð−1ÞnΔckljsrðnÞ�; ð1Þ

where sgn½x� refers to the sign of the argument x,
ckljsrðnÞ denotes the jSR load at site ðk; lÞ, at the beginning
of the nth beat, and where the ð−1Þn is included so that the
sign of mijðnÞ gives a measure of the phase of alternans;
i.e., mkl ¼ þ1 for all n denotes a large-small-large-small
sequence of ckljsrðnÞ. Global alternans appears when the
concentrations in ckljsr alternate from beat to beat
½ΔckljsrðnÞ ≠ 0� with the same overall phase. Indeed, the
magnitude of whole cell alternans is the system average
mðnÞ ¼ ð1=L2ÞPij mijðnÞ; which gives a measure of the
global alternans phase at beat n. We find that close to the
transition to global alternans our order parameter displays
features indicative of long-range order. In Fig. 2(a) we plot
a snapshot of the steady state spatial distribution of
alternans amplitude ð−1ÞnΔckljsrðnÞ; and phase mklðnÞ, for
decreasing pacing rates. We observe that global alternans
forms via the gradual coalescence of in-phase domains
similar to the patterns observed in the 2D Ising model close
to the critical temperature. A plot of the time dependence of
the average alternans phase [Fig. 2(b)] displays large
temporal fluctuations near the critical pacing rate, which
is indicative of critical slowing down near a second order
phase transition. This result is also consistent with the
observation of a diverging correlation length [Fig. 2(c)] as
the critical pacing rate is approached.
Finite size scaling analysis.—To uncover the nature of

the transition we have computed moments of the alternans
phase defined as

hmki ¼ 1

N

XN
n¼1

jmðnÞjk; ð2Þ

whereN is the number of beats. In Fig. 2(c) we plot hm2i vs
the pacing rate T, showing the gradual onset of alternans.
In the range of pacing intervals where hm2i begins to
increase, the susceptibility, defined as χ ¼ L2ðhm2i −
hmi2Þ; increases with system size [Fig. 2(c)], suggesting
that it diverges in the thermodynamic limit, which is
indicative of long-range correlations near a phase transi-
tion. To find the critical pacing period Tc we compute the
Binder cumulant [23] U ¼ −3þ hm4i=hm2i2, which is

FIG. 1 (color online). Ca signaling architecture in cardiac
myocytes. (a) Two-dimensional model of diffusively coupled
compartments. LCC channels (∼1–5) deliver Ca to the dyadic
space that contains a cluster (∼10–150) of RyR channels. (b) Each
Ca release unit (CaRU) is composed of 5 compartments: the
dyadic junction with Ca concentration cd; the submembrane
space (cs); the bulk myoplasm (ci); the junctional SR (jSR) with
concentration (cjsr); and the network SR ðcsrÞ. (c) Markovian
models of the LCC and RyR channels. (d) Average cytosolic Ca
(ci) displaying Ca alternans at a pacing rate of 250 ms, along with
representative traces of cd. (e) Bifurcation of the whole cell
average Ca ci and the junctional SR load cjsr.
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independent of system size according to the finite size
scaling ansatz hmki ¼ L−kβ=γF½ðT − TcÞL1=ν�. Numerical
simulations of systems sizes 40 < L < 90, with temporal
averages of N ∼ 106 beats, reveal that the curves of the
Binder cumulant intersect over a narrow range of the pacing
period T consistent with finite size scaling [Fig. 2(c), and
inset]. At criticality, finite size scaling predicts that
hmi ∼ L−β=ν, χ ∼ Lγ=ν, and ½∂U=∂T�Tc

∼ L1=ν, where
β; γ; ν are critical exponents that characterize the univer-
sality class of the phase transition. Numerical simulation of
these exponents gives (see full details in [13]) β=ν ¼
0.18� 0.11, γ=ν ¼ 1.75� 0.08, ν ¼ 0.91� 0.14. The
values of these exponents indicate that the onset of calcium
alternans is consistent with a two-dimensional order-
disorder Ising transition (β=ν ¼ 0.125, γ=ν ¼ 1.75, ν ¼ 1).
To check the robustness of our results we have also

considered the effect of Gaussian fluctuations, up to 20% of
the average, in the diffusion coefficient linking intracellular
compartments. We find that disorder does not introduce
significant changes in the behavior of the order parameter,
showing, as in the pure system, a clear signature of a phase
transition (see SupplementalMaterial [13]). Another impor-
tant question to address is whether the order-disorder
transition proposed here is sufficient to explain the for-
mation of whole cell alternans in a 3D cardiac cell. To
answer this question we have also simulated a 3D array of
CaRUs, which more closely represent the internal geometry
of a cardiac cell (see Supplemental Material [13] for full
details). We account for the larger spacing between Z planes

by including a diffusive coupling between compartments in
different planes that is 10%–20% that within a Z plane. Our
simulations show that this small diffusive coupling between
planes is sufficient to synchronize alternans across the
whole cell. Thus, the order-disorder transition reported here
also occurs in a realistic 3D geometry of a cardiac cell.
Stochastic coupled maps model.—To uncover the under-

lying mechanism for the alternans transition we have also
developed a coupled maps model of Ca cycling that mimics
the key features of our detailed stochastic model. We first
note that local signal transduction can be characterized by
the probability, denoted as Ps, that a local LCC channel
opening will trigger a Ca spark. To shed light on this
quantity we have computed Ps using the previous detailed
model. In Fig. 3(a) we plot the probability of inducing a Ca
spark as a function of the SR load for different numbers of
RyR channels in the cluster. Our results reveal that Ps has a
robust sigmoid dependence on the SR load, which arises
due to the cooperativity of RyR channels in the cluster
which transition to the open state in a Ca dependent
manner. To analyze the dynamical consequences of this
feature we construct an iterative map describing Ca cycling.
Here, we keep track of the beat-to-beat changes of the SR
load at beat n, and site i, j, using a discrete variable xijðnÞ.
The main features of our coupled map system, illustrated in
Fig. 3(b), are (i) The release phase. Here, the CaRU at beat
n releases Ca with a trigger probability Ps½xijðnÞ�, which is
simply the SR load dependent probability of triggering a Ca
spark. Thus, we have

FIG. 2 (color online). (a) Snapshots of the spatial distribution of the alternation of the jSR load (top, beat-to-beat difference in mM
encoded in color) and alternans phase mkl (bottom), for L ¼ 1000, as the pacing period is decreased, showing a transition from a
disordered to an ordered phase. (b) Alternans phase as a function of beat number for system size L ¼ 200. (c) Correlation length (in units
of number of release sites) as a function of pacing period. A fit of the data gives an exponent ν ¼ 1, consistent with an Ising scaling.
Pacing rate dependence of hm2i and susceptibility χ for several system sizes. Binder cumulant curves for several system sizes showing
an intersection at a critical pacing rate Tc ≈ 266 ms.
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~xijðnÞ ¼ xijðnÞ − rxijðnÞηijðnÞ; ð3Þ

where ~xijðnÞ is the SR load after release at the nth beat
[Fig. 3(b)], and where ηijðnÞ is a random variable that is
generated at each site according to the rule

ηijðnÞ ¼
�
1 with probabilityPs½xijðnÞ�
0 with probability 1 − Ps½xijðnÞ�:

ð4Þ

Here we use a probability of sparking given by PsðxÞ ¼
1=½1þ ðx�=xÞγ� in order to mimic the sigmoid response
observed in the fully stochastic simulation. (ii) Nearest
neighbor equilibration. In the next phase we mimic Ca
diffusion between signaling units by averaging the local SR
load. Therefore, we average over the nine nearest neighbors

x̄ijðnÞ ¼
1

9

X
hkli

~xklðnÞ: ð5Þ

(iii) SR recovery phase. The Ca released into the cell is then
pumped back into the SR via SERCA uptake pumps. This
effect can be modeled as

xijðnþ 1Þ ¼ x̄ijðnÞ þ F½x̄ijðnÞ�; ð6Þ

where the change in SR concentration due to the uptake
flux is taken to have the form FðxÞ ¼ bð1 − xÞ for x ≤ 1
and FðxÞ ¼ 0 for x > 1. The parameter b gives a measure
of the amount of Ca pumped back into the SR during that

beat, which is proportional to the pacing period T. Thus, we
vary the parameter b to simulate the system response to
variable pacing rates.
Simulations of an L × L array of coupled maps systems

reveal that at rapid pacing rates the global average xðnÞ ¼
ð1=MÞPM

i;j¼1 xijðnÞ undergoes an alternans transition sim-
ilar to that observed in the full stochastic simulation. To
characterize the alternans transition we follow our previous
approach and compute the order parameter at beat n and
site i; j as mijðnÞ ¼ sgnfð−1Þn½xijðnÞ − xijðn − 1Þ�g. In
Fig. 3(c) we plot m as a function of b for different system
sizes L. We observe that the average amplitude increases
smoothly as the parameter b is decreased below a critical
point bc, which indicates the gradual formation of an
ordered phase. Furthermore, our data [Fig. 3(d)] reveal that
the Binder cumulants intersect over a narrow range of b,
which is consistent with the predictions of finite size
scaling near a phase transition. We have computed the
associated critical exponents using averages over 109 beats
(see [13] for details), and find exponents β=ν, γ=ν, and ν
consistent with the Ising universality class.
Discussion.—In this Letter we have applied a detailed Ca

cycling model to show that the transition to alternans in
cardiac myocytes can be described as a second order phase
transition in the Ising universality class. The mechanism for
alternans is due to the fact that local Ca release is
probabilistic and all-or-none, so that at rapid pacing rates
the switchlike behavior of the probability of sparking Ps
favors alternating sequences of release and no-release. This
sequence of release events is stochastic and eventually
fluctuations desynchronize neighboring units. For a suffi-
ciently steep curve, however, fluctuations are smaller and
alternating sequences persist for a large number of beats, so
nearest-neighbor diffusion suffices to synchronize sequen-
ces that are in phase. We find that this synchronization of
local alternating sequences occurs via an order-disorder
transition in the Ising universality class. This result can be
partially explained by the observation that a �1 alternans
phase differs only by a shift of one beat, and therefore
should be dynamically equivalent. This underlying Ising
symmetry of the system (first pointed out in [8]), combined
with short range diffusive coupling, is likely the key factor
that places the system in the Ising universality class.
Critical behavior has also been observed in subcellular

Ca dynamics in the absence of pacing. In particular, Nivala
et al. [24] demonstrated that Ca released in the cell can be
tuned to exhibit a self-organized critical state (SOC) in
which stochastic Ca sparks generate Ca spark clusters of
different sizes via propagating Ca waves. This critical
behavior is distinct from the order-disorder transition
reported here which occurs in response to pacing. In both
cases Ca diffusion plays a crucial role. For the Ising
transition Ca diffusion is required to synchronize local
alternating responses, while the SOC state requires
diffusion to induce propagating Ca waves in the cell.

FIG. 3 (color online). (a) The probability of sparking Ps in
response to a rectangular voltage clamp from −85 to 0 mV. LCC
channel openings are induced at time t ¼ 0 by a rapid depolari-
zation from the resting potential. Ca spark has been triggered if
the number of open RyR channels exceeds 80% of the total
number of RyR channels in the cluster. (b) Illustration of a
coupled maps model. Each CaRU in the cell is modeled using an
iterative map of the SR concentration xijðnÞ, at site i, j and beat n.
(c) The average alternans amplitude hmi as a function of b for the
indicated system sizes. Model parameters used are x� ¼ 0.7,
r ¼ 0.7, and γ ¼ 50. (d) Binder cumulant for four system sizes
showing intersection.
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These results reveal that Ca signaling in cardiac myocytes
exhibits a broad range of distinct critical behavior.
The emergence of equilibrium properties in nonequili-

brium systems has also been observed in coupled chaotic
maps which exhibit phase transitions [22,25], where it has
been shown that a course grained description satisfies the
conditions for equilibrium statistical mechanics, such as
detailed balance and Gibbs distributions [26]. Our results
suggest that this scenario explains the phase transition
towards Ca alternans, where the probabilistic response of
RyR and LCC channels, which determines the strength of
local fluctuations, plays the role of temperature. It is the
interplay between this local stochasticity and diffusive
coupling that is responsible for the rich spatiotemporal
structures that exhibit critical behavior.
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