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We use machine-learning methods on local structure to identify flow defects—or particles susceptible to
rearrangement—in jammed and glassy systems. We apply this method successfully to two very different
systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-
Jones glass in both two and three dimensions above and below its glass transition temperature. We also
identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show
it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a
broad range of disordered materials.
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All solids flow at high enough applied stress and melt at
high enough temperature. Crystalline solids flow [1] and
premelt [2] via localized particle rearrangements that occur
preferentially at structural defects known as dislocations.
The population of dislocations therefore controls both how
crystalline solids flow and how they melt. In disordered
solids, it has long been hypothesized that localized particle
rearrangements [3] induced by stress or temperature also
occur at localized flow defects [4–6]. Like dislocations in
crystals [7], flow defects in disordered solids are particu-
larly effective in scattering sound waves, so analyses of
the low-frequency vibrational modes [8] have been used
successfully to demonstrate the existence of localized flow
defects [7,9–17]. However, all attempts to identify flow
defects [18,19] directly from the structure, without using
knowledge of the interparticle interactions, have failed
[18,19]. Likewise, in supercooled liquids, purely structural
measures correlate only weakly with kinetic heterogeneities
[17], although correlations between structure and dynamics
have been established indirectly [20–24].
Here we introduce a novel application of machine-

learning (ML) methods to identify “soft” particles that
are susceptible to rearrangement or, equivalently, that
belong to flow defects, from the local structural geometry
alone. Note that our goal is not to identify particles that
undergo rearrangements—this requires studying their
dynamics. Rather, our goal is to identify the structural
characteristics that distinguish particles that are susceptible
to rearrangement from those that are not. We apply the
method to two very different systems of an experimental
frictional granular packing under uniaxial compression and
a model thermal Lennard-Jones glass in both two and three
dimensions (see Fig. 1). The analysis of granular packing
shows that our method succeeds even when previous
methods based on vibrational modes [12] are inapplicable.

The results for Lennard-Jones systems show that the
correlation between structure and irreversible rearrange-
ments does not degrade with increasing temperature, even
above the dynamical glass transition, and is equally strong
in two and three dimensions. Finally, we exploit the method
to discover which structural properties distinguish soft
particles from the rest of the system and to understand
why previous attempts to identify them by structural
analysis have failed.
Physically motivated quantities such as free volume or

bond orientational order correlate with flow defects [12] but
are insufficient to identify them a priori. We introduce a
large set of quantities that are each less descriptive, but
when used as a group provide a more complete and
unbiased description of local structure. These quantities
have been used to represent the potential energy landscape
of complex materials from quantum mechanical calcula-
tions [25]. For a system composed of multiple species of
particles, we define two families of structure functions for
each particle i,
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X
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where Rij is the distance between particles i and j; θijk is
the angle between particles i, j, and k; L, μ, ξ, λ, and ζ are
constants; X,Y,Z are labels that identify the different
species of particles in the system, with the correspondence
i ↔ X, j ↔ Y, k ↔ Z. By using many different values of
the constants μ, ξ, λ, and ζ we generate many structure
functions in each family that characterize different aspects
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of a particle’s local configuration; for a list, see the
Supplemental Material [26]. The first family of structure
functions G characterizes radial density properties of the
neighborhood, while the second family Ψ characterizes
bond orientation properties. The sums are taken over
particle pairs whose distance is within a large cutoff
RS
c . Our results are qualitatively insensitive to the

choice of RS
c as long as it includes several neighbor shells.

Having characterized local structure through GX
Y ði; μÞ

and ΨX
YZði; ξ; λ; ζÞ, we introduce a method to infer from

this information the location of flow defects in disordered
solids. Generically, we begin with a set of N particles to be
classified as “soft” or “hard.” Each particle is described by
a set of M variables derived from the two families of
functions GX

Y and ΨX
YZ by varying the constants μ, ξ, λ,

and ζ (here M ¼ 160); this is represented by the set of
vectors fF1;…;FNg, where Fi constitutes an embedding
of the local environment of a particle i, constructed at a
time ti, in RM. We select at random a subset of n of these
particles (the “training set”) and label the particles with an
index r ¼ 0; 1. A particle i is labeled as ri ¼ 1 if it
rearranges (the details of which will be discussed below)
between a time ti, when the structure is characterized, and
a time ti þ Δt and with ri ¼ 0 if it does not rearrange in
this time interval.
The next step is to use the particles in the training set,

along with their labels ri, to classify a particle as soft or
hard based on the structure of its neighborhood. We use the
support-vector machine (SVM) method [28], which con-
structs a hyperplane in RM that best separates particles with
ri ¼ 1 from those with ri ¼ 0 in the high-dimensional
space characterizing local structure. Once this hyperplane
has been established for the training set, we classify
particles not in the training set (either from the same
configuration or from other configurations at the same
conditions) as soft if they fall on the r ¼ 1 side of the
hyperplane and as hard if they fall on the r ¼ 0 side.
Generically, no exact separation is possible, so the
SVM method is adapted to penalize particles whose
classification is incorrect; the degree of penalty is con-
trolled by a parameter C where larger values of C allow
for fewer incorrect classifications. We find that the quality
of our classifications is insensitive to C for C > 0.1
(Supplemental Material [26]). The SVM algorithm was
implemented using the LIBSVM package [27].
Note that although we are using the dynamics of particles

in the training set to construct the hyperplane, the hyper-
plane is not a dynamical quantity but a structural one. It
identifies which aspects of the structural environment are
different for particles that rearrange and for those that do
not. Once the hyperplane is constructed, it can therefore be
used to classify particles by their local structure as soft
(susceptible to rearrangement) or hard.
To identify rearrangements we calculate, for each par-

ticle i, the widely used quantity [5]

D2
minðiÞ≡min

Λ

�
1

z

X
j
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which characterizes the magnitude of nonaffine displace-
ment during a time interval Δt. Here, the sum runs over
neighbors j within a distance of RD

c of particle i, Rij is the
center-center displacement between particles i and j, and z
is the number of neighbors within RD

c . The quantity is
minimized over choices of the local strain tensor Λ. We find
that D2

min is insensitive to the choice of RD
c and Δt so long

as RD
c is large enough to capture the particles local

neighborhood and Δt is longer than the ballistic time
scale. A particle is said to have undergone a rearrangement
ifD2

min ≥ D2
min;0. We chooseD2

min;0 such that approximately
0.15% of the particles from each species in each system
has gone through a rearrangement, although the results
depend little on the specific choice ofD2

min;0 (Supplemental
Material [26]).
We first test our approach on an experimental system of

two-dimensional (d ¼ 2) “pillars” of particles. A bidisperse
pillar made up of grains (plastic cylinders resting upright on
a horizontal substrate) is situated between two plates in a
custom-built apparatus. The bottom plate is fixed, and the
top plate is driven into the pillar at a constant speed of
v0 ¼ 0.085 mm=s. The pillars are composed of a bidis-
perse mixture of approximately 1500 rigid grains with size
ratio 3:4 and the large particles having a radius of
dAA ¼ 0.3175 cm. These particles have elastic and fric-
tional interactions with each other, as well as frictional
interactions with the substrate, making the identification of
flow defects using vibrational modes impossible. A camera
is mounted above and captures images at 7 Hz throughout
the compression.
We construct our training set from compression experi-

ments performed on 10 different pillars. We select 6000
particles at random from the entire duration of the experi-
ments that undergo a rearrangement in the next 1.43 s and
an equal number of particles that do not. To identify
rearrangements, we calculate D2

min with RD
c ¼ 1.5dAA

and D2
min;0 ¼ 0.25d2AA. Compression of the mechanical

pillar from the top only affects particles above a certain
“front” that starts at the top and advances towards the
bottom with time. Our training set contains only particles
within this activated front. Particles in a horizontal slice
between y and yþ δy are said to be within the activated
front if the average speed of particles in the slice
exceeds vthresh ∼ 0.04 mm=s.
As a second test, we apply our approach to a model glass

in both d ¼ 2 and 3. We study a 65:35 binary Lennard-
Jones (LJ) mixture with σAA ¼ 1.0, σAB ¼ 0.88, σBB ¼ 0.8,
ϵAA ¼ 1.0, ϵAB ¼ 1.5, and ϵBB ¼ 0.5 [29]. The LJ potential
is cut off at 2.5σAA and smoothed so that both first and
second derivatives go continuously to zero at the cutoff.
The natural units for the simulation are σAA for distances,
ϵAA for energies, and τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2AA=ϵAA

p
for times. We
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perform molecular dynamics simulations using LAMMPS

[30] with a time step of 5 × 10−3τ at density ρ ¼ 1.2, using
a Nosé-Hoover thermostat with a time constant of τ. Here,
temperature is in units of ϵAA=kB, where kB is the
Boltzmann constant. In d ¼ 2, we consider a system of
10 000 particles at temperatures T ¼ 0.1; 0.2; 0.3, and 0.4
at a single strain rate _γ ¼ 10−4=τ. In all cases, data was
collected after allowing the system to reach steady state by
shearing up to 20% strain. In d ¼ 3, we use a collection of
30 000 particles at temperatures T ¼ 0.4; 0.5; 0.6 with no
strain. The quiescent system has a glass transition at TG ¼
0.33 in d ¼ 2 and TG ¼ 0.58 in d ¼ 3 [29]. Therefore, in
both dimensions we study the system both above and below
its glass transition temperature.
At each temperature, we construct training sets of 6000

and 10 000 particles, in d ¼ 2 and 3, respectively, selected
at random from the entire run that undergo a rearrangement
in the following Δt ¼ 2τ units of time and an equal number
of particles that do not undergo a rearrangement. To
identify rearrangements, we calculate D2

min with RD
c ¼

2.5σAA to be the same as the range of the truncated LJ
potential and Δt ¼ 2τ. In d ¼ 3, the D2

min distributions of
the species A and B particles differ significantly and so are
treated separately throughout the analysis.
We now test our classifying hyperplane on the three

systems outlined above. For each system, we construct a
test set of particles that were not used in training the SVM;
for the pillar, this test set consists of 100 000 particle
environments from many snapshots of 10 additional com-
pression experiments. For the d ¼ 2 and 3 LJ glasses we
use 2 × 107 and 75 × 107 unseen particle environments
(composed of each particle’s environment aggregated
over every snapshot of the simulation), respectively.
Figures 2(a)–2(d) show the probability PðD2

minÞ that a
particle with an observed value of D2

min was identified
as soft by our classification a priori for each system.
Figures 2(c)–2(d) treat the particles of species A and
species B separately for the d ¼ 3 LJ glass. In all cases,

we see that PðD2
minÞ rises with increasing plastic activity

D2
min. This implies that the particles identified as soft by the

SVM are more likely to be involved in plastic flow. For the
granular pillar, 21% of the particles are classified as soft,
and these particles capture 80% of the rearrangements. For
the d ¼ 2 and 3 LJ systems, these numbers are 26% and
73% and 24% and 72%, respectively, at the highest
temperatures studied. Thus, we consistently find rearrange-
ments to occur at soft particles about 3 to 4 times more
frequently than if the soft particles were randomly chosen.
Finally, Figs. 2(b)–2(d) show that PðD2

minÞ collapses for
different T both for two-dimensional and three-dimensional
systems, when D2

min is scaled by Tσ2AA; this scaling arises
since for particles not undergoing rearrangement, D2

min ∼
hv2i ∼ T by the equipartition theorem [16].
Remarkably, our ability to identify soft particles does not

decrease with increasing temperature or dimension. For the
d ¼ 2 LJ system over the same temperature range, the
accuracy of the vibrational mode method decreases by over
50% [16]. The key difference between the two methods is
that we construct local environments from the actual
particle positions in snapshots of the thermal system, while
soft particles from vibrational modes are extracted from
particle positions in the inherent structures obtained by
quenching to T ¼ 0 (Supplemental Material [26]).

FIG. 1 (color online). Snapshot configurations of the two
systems studied. Particles are colored gray to red according to
their D2

min value. Particles identified as soft by the SVM are
outlined in black. (a) A snapshot of the pillar system. Com-
pression occurs in the direction indicated. (b) A snapshot of the
d ¼ 2 sheared, thermal Lennard-Jones system.

(b)(a)

(c) (d)

FIG. 2 (color online). Probability that a particle of a given D2
min

value is soft. The vertical dashed lines are corresponding D2
min;0

values. (a) The result for the pillar system, where dAA refers to the
large grain diameter (since this is a granular system with
macroscopic grains, thermal fluctuations are negligible).
(b) The result of using an SVM trained at a temperature T
(T ¼ 0.1; 0.2; 0.3 and 0.4 shown in different colors) to classify
data at the same temperature for the d ¼ 2 LJ glass. [(c), (d)]
Results for species A and B, respectively, for the d ¼ 3 system at
T ¼ 0.4; 0.5 and 0.6.
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The hyperplane that divides soft from hard particles tells
us which features of the local structural environment are
important in distinguishing between the hard and soft
particles. To illustrate this, we focus on the sheared
d ¼ 2 LJ glass at T ¼ 0.1. The first set of structure
functions GX

Y ði; μÞ, defined in Eq. (1), has a familiar
physical interpretation in terms of the radial distribution
function: gXYðrÞ ¼ limL→0hGX

Y ði; rÞi=2πr. This family of
structure functions is essentially a parametrization of a
particle’s local contribution to gðrÞ. In Fig. 3 we show the
approximations to various gðrÞ functions constructed in this
way, using L ¼ 0.1σAA, for particles identified as hard
(black lines) and soft (red lines).
In all cases, we see that soft particles feature slightly

lower peaks and higher troughs in gðrÞ. To see whether
this difference is sufficient to identify soft particles, we
expand our analysis beyond average values of GX

Y ði; μÞ, to
the distributions of the different structure functions. In
Fig. 4(a) we show the distribution of values of GB

Aði; rABpeakÞ
where rABpeak is the location of the first peak of gBAðrÞ, for soft
particles (red) and hard particles (blue and green). While
the distribution for soft particles features a single peak,
that for hard particles is bimodal. This indicates the
existence of (at least) two distinct populations of hard
particles that we divide into two groups: one with
GB

Aði; rABpeakÞ=r < 1=2 (blue) that we will call H0 type and
one with GB

Aði; rABpeakÞ=r > 1=2 (green) that we will call H1

type. Radial information therefore distinguishes between
soft particles andH1 hard particles but not between soft and
H0 hard particles.

We now consider the distribution of ΨB
ABði; 2.07σAA;

1; 2Þ for soft particles (red), H0 hard particles (blue), and
H1 hard particles (green), shown in Fig. 3(c). Physically,
ΨB

ABði; 2.07rBApeak; 1; 2Þ is large when there are many pairs of
neighbors of the central particle that lie within a distance ξ
with small angles between them, such that one is of species
A and one is of species B. The soft particles fall into a single
category (one peak, red) while H0-type and H1-type hard
particles—defined from radial information above—have
very different distributions (blue and green peaks). Unlike
before, here the soft particles and theH0 hard particles have
very different distributions while soft particles and H1 hard
particles have similar distributions. Bond-angle informa-
tion therefore distinguishes between soft particles and
H0-type hard particles but not between soft particles and
H1-type hard particles. To fully distinguish between soft
and hard particles, both radial and bond-angle information
is needed. Soft particles have environments that—at a
minimum—have fewer particles in their nearest neighbor
shell and larger angles between adjacent particles.
In summary, we have presented a novel ML method for

identifying flow defects in disordered solids. We note that
we have focused on the short-time correlation of structure
with particle rearrangements. However, our method should
shed light on the connection between local structural
evolution and the correlation of rearrangements in time
and space [31] over longer time scales in glass-forming
liquids. We also note that we cannot predict the specific
particles that will participate in rearrangements at a later
time; rather, we identify a population of particles that is
likely to rearrange. The latter quantity is more useful in
thermal and/or sheared systems, since fluctuations lead to
stochasticity in rearrangements.
Our method relies on local structure alone and can be

applied directly to snapshots of experimental systems, in

FIG. 3 (color online). Radial distribution functions averaged
over hard (black dark lines) or soft (red light lines) particles. gAB
and gBA functions of soft particles are not equal to each other
since they refer to different kinds of regions: neighbors of soft
particles from species A and neighbors of soft particles from
species B, respectively.

FIG. 4 (color online). (a) Distribution of GA
Bði; rABpeakÞ, propor-

tional to the Gaussian weighted density at rABpeak, for soft (red dark)
and hard (blue medium dark and green light) particles; rABpeak
corresponds to the first peak of gAB or gBA. (b) Distribution of
ΨB

ABði; 2.07σAA; 1; 2Þ, proportional to the density of neighbors
with small bond angles near a particle i, for soft (red dark) and
hard (blue medium dark and green light) particles. The inset
shows examples of configurations with corresponding radial and
bond orientation properties, where dark (light) gray neighbors are
of species AðBÞ.
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contrast to previous methods [12]. Our approach also scales
linearly with the number of particles N, while vibrational
mode approaches scale as N3. The efficient identification
of flow defects is critical to testing phenomenological
approaches to plasticity based on flow defects [6,32–34].
Previous applications of machine-learning methods in
physics have focused on approximation [25,35,36] or on
optimization and design tools [37–40]. Our approach
shows that such methods, designed for detecting subtle
correlations, can also be used directly to gain conceptual
understanding not achieved with conventional approaches.
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