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We define a new Z2-valued index to characterize the topological properties of periodically driven two
dimensional crystals when the time-reversal symmetry is enforced. This index is associated with a spectral
gap of the evolution operator over one period of time. When two such gaps are present, the Kane-Mele
index of the eigenstates with eigenvalues between the gaps is recovered as the difference of the gap indices.
This leads to an expression for the Kane-Mele invariant in terms of the Wess-Zumino amplitude.
We illustrate the relation of the new index to the edge states in finite geometries by numerically solving an
explicit model on the square lattice that is periodically driven in a time-reversal invariant way.
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Introduction.—The recent discovery of the quantum spin
Hall effect [1–4] renewed interest in topological insulating
phases which were first encountered in the beginning of the
1980s with the discovery of the quantum Hall effect (QHE)
[5–8]. In his seminal paper [9] of 1981, Laughlin related the
quantized Hall conductance to a quantum pump adiabati-
cally driven by the magnetic flux. As shown by Thouless
[10], such pumps drive through the insulator an integer
number of charges whose origin is topological. In deep
analogy, several works interpreted topological insulators
and their robust boundary states in terms of quantum
adiabatic pumps [11–13]. Interestingly, quantum crystals
can exhibit original topological features when periodically
driven beyond the adiabatic regime. While such modulation
was first proposed to trigger a topological phase transition
[14–16], it can also yield specific topological properties
which cannot be understood within the usual framework of
topological band theory [17,18]. The search for these so-
called Floquet topological states quickly became a very
active field and has recently stimulated numerous exper-
imental works. A realization of such phases in condensed
matter is quite challenging [19,20]. Several alternative
artificial systems have been proposed to simulate and
probe analogous phases, such as lattices of photonic
resonators periodically driven by electro-optic modulators
[21], ring resonator lattices [22], or more recently, photons
coupled to excitons in semiconductors [23]. Signatures of
topological Floquet states have already been revealed in
one-dimensional quantum walks with photons [24], as well
as in 2D waveguide lattices [25]. Shaken trapped cold
atoms were also proposed as a good candidate [26–28]
and nontrivial topological phases were recently observed
there [29].
Remarkably, although dissipation is inherent to driven

systems, signatures of the topological properties observed
in these experiments can be captured by Hermitian or
unitary operators. In particular, topological properties
of 2D periodically driven systems with no additional

symmetry are well characterized by the invariant proposed
by Rudner et al. [18] generalizing the description of static
band insulators in terms of first Chern numbers. For
equilibrium phases in the presence of symmetries, indices
different from Chern numbers are required to describe
topological properties. An analogous treatment for peri-
odically driven systems is still lacking. Different works
addressed recently this question in 1D systems [30–32]. Of
great importance is, however, the case of 2D periodically
driven time-reversal invariant (TRI) fermionic systems. In
this Letter we introduce a novel topological index that
generalizes the Kane-Mele (KM) invariant for the equilib-
rium quantum spin Hall phases [2] in the spirit of the
invariant of [18] for unconstrained periodically driven
systems.
We define a Z2-valued quantity Kϵ½U� that depends on

the (quasienergy) spectral gap ϵ of the evolution operator
over one period of time UðTÞ in such a way that its
difference for two distinct quasienergy gaps ϵ and ϵ0
satisfies the relation

KMðEϵ;ϵ0 Þ ¼ Kϵ0 ½U� − Kϵ½U�; ð1Þ

where KMðEϵ;ϵ0 Þ is the Kane-Mele invariant of the vector
bundle Eϵ;ϵ0 of eigenstates of UðTÞ associated with the
quasienergy band between the two gaps. Moreover, we find
that this index builds unexpected bridges between the
Kane-Mele invariant and the 2D Wess-Zumino action
functional, providing a new expression for the static
Kane-Mele index that brings the field theory toolbox to
its analysis.
In the following, we first review the construction of the

index W of [18] for the case with no symmetry. Then, we
define the new invariant for TRI driven crystals. We finally
illustrate some topological properties of the TRI periodi-
cally driven systems on a simple lattice model.
Invariant for 2D periodically driven systems.—The

Hamiltonian H describing a system on a translation
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invariant lattice may be block diagonalized by the Fourier
transform. This produces the Bloch Hamiltonians HðkÞ
acting on CN for k in the Brillouin torus (BZ), where N is
the (finite) number of internal degrees of freedom. It is
always possible to assure that HðkÞ ¼ HðkþGÞ for G in
the reciprocal lattice. A periodically driven system may be
described by a time periodic Hamiltonian which corre-
sponds to Bloch Hamiltonians periodic both in quasimo-
menta and in time, Hðt; kÞ ¼ Hðt; kþ GÞ ¼ Hðtþ T; kÞ.
The time evolution of such systems is described by

unitary operators Uðt; kÞ ∈ UðNÞ satisfying the equation
i _Uðt; kÞ ¼ Hðt; kÞUðt; kÞ with initial conditionUð0;kÞ¼ I.
Operators Uðt; kÞ define a smooth mapping from
½0; T� × BZ to UðNÞ. A natural invariant that characterizes
the topological properties of smooth maps between two
manifolds is their homotopy class [33], which is, however,
trivial for U. This could be different if U were periodic
in time defining a map from S1 × BZ to UðNÞ. One
may periodize U in a natural way using Floquet theory
if unitary operators UðT; kÞ have a common spectral
gap [18].
To do so explicitly, one diagonalizes the unitary operator

UðT; kÞ (this is the essence of the Floquet theory) as

UðT; kÞ ¼
XN
j¼1

λjjψ jihψ jj ð2Þ

and one defines the effective Hamiltonian

Heff
ϵ ðkÞ ¼ i

T

XN
j¼1

ln−TϵðλjÞjψ jihψ jj; ð3Þ

where ln−Tϵ is the logarithm with cut at argument −Tϵ, so
that UðT; kÞ ¼ e−iTH

eff
ϵ ðkÞ. For this effective Hamiltonian to

depend smoothly on k, e−iTϵ has to lie in an eigenvalue gap
of UðT; kÞ for all k. The quantities ϵj such that λj ¼ e−iTϵj

are called quasienergies, so this gap is a quasienergy gap.
This allows us to define the periodized versions of Uðt; kÞ

Vϵðt; kÞ ¼ Uðt; kÞeitHeff
ϵ ðkÞ; ð4Þ

which satisfy Vϵð0; kÞ ¼ I ¼ VϵðT; kÞ. The maps Vϵ,
explicitly dependent on the cut −Tϵ, may be considered
as defined on the 3-torus S1 × BZ. As described in [18], the
integer-valued integral [34]

Wϵ½U� ¼ 1

24π2

Z
½0;T�×BZ

trðV−1
ϵ dVϵÞ3 ≡ degðVϵÞ; ð5Þ

which we shall, somewhat abusively, call the degree of map
Vϵ, defines a topological invariant that may be associated to
the gap containing ϵ. It is well defined until the gap closes.
The invariants W are thus attached to gaps in the spectrum
unlike the first Chern numbers that are attached to spectral

bands. Nonetheless, when UðT; kÞ has two quasienergy
gaps 0 ≤ ϵ < ϵ0 < 2π=T then Heff

ϵ0 ðkÞ −Heff
ϵ ðkÞ ¼

ð2π=TÞPϵ;ϵ0 ðkÞ, where Pϵ;ϵ0 ðkÞ are projectors on states
jψ ji with eigenvalues λj such that ϵ < argðλ−1j Þ=T < ϵ0.
The first Chern number of the vector bundle Eϵ;ϵ0 on which
Pϵ;ϵ0 ðkÞ projects is then related to indices W by c1ðEϵ;ϵ0 Þ ¼
Wϵ0 ½U� −Wϵ½U� [18].
Index K for TRI periodically driven systems.—In static

systems, time-reversal invariance is described at the level of
Hamiltonian as ΘHΘ−1 ¼ H with the time-reversal oper-
ator Θ ¼ e−iπSy=ℏC, where S is the spin operator and C
represents the complex conjugation. More generally, a
system is time-reversal invariant when ΘHðtÞΘ−1 ¼
Hð−tÞ, or, equivalently, ΘUðtÞΘ−1 ¼ Uð−tÞ, up to a
choice of the origin of time. For a family of Bloch
Hamiltonians, this property translates into ΘHðt; kÞΘ−1 ¼
Hð−t;−kÞ, i.e., ΘUðt; kÞΘ−1 ¼ Uð−t;−kÞ for the evolu-
tion operators.
The first key observation is that, in a TRI periodically

driven system, Kramers pairs ðψ j;Θψ jÞ of eigenstates of
UðT; kÞ and UðT;−kÞ, respectively, “evolve in time” in
opposite directions: ΘUðt; kÞψ jðkÞ ¼ Uð−t;−kÞΘψ jðkÞ
and similarly ΘVϵðt; kÞψ jðkÞ ¼ VϵðT − t;−kÞΘψ jðkÞ,
as illustrated in Fig. 1(a). This property implies that
Wϵ½U� ¼ 0 because the contributions from two Kramers
partners cancel. Consequently, also the first Chern numbers
of quasienergy bands vanish in TRI periodically driven
systems, as for the energy bands in the static case. To
circumvent this cancellation, we shall keep the contribution
only of one member of each Kramers pair by restricting the
time evolution to times between t ¼ 0 and t ¼ T=2 [see
Fig. 1(a)] in the same spirit than the construction by Moore
and Balents in static systems [35].
The second key observation is that TR relates states at

time t ¼ T=2 to states at the same time. We may thus

(a)

(b)

FIG. 1. Sketch of the periodized evolution over period T.
(a) Periodized evolution Vðt; kÞ. Time-reversal relates pairs
ðψ ;ΘψÞ of states at ðt; kÞ and ð−t;−kÞ, as shown by black
arrows. (b) Contracted half-evolution V̂ðt; kÞ. The second half of
the initial evolution was discarded and replaced by a contraction
respecting an equal-time constraint (6b) depicted as black arrows.
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directly compare the evolved Kramers partners at t ¼ T=2.
Then it is possible to deform the map k↦VϵðT=2; kÞ to the
identity through a contraction of the Kramers pairs present
at t ¼ T=2. This will result in a periodic map containing the
information on the topological winding of Kramers pairs
during the first half-period; see Fig. 1(b).
More concretely, we consider a smooth map V̂ϵ from

½0; T� × BZ to UðNÞ such that

V̂ϵðt; kÞ ¼ Vϵðt; kÞ for 0 ≤ t ≤ T=2 ð6aÞ
and

ΘV̂ϵðt; kÞΘ−1 ¼ V̂ϵðt;−kÞ for T=2 ≤ t ≤ T; ð6bÞ

with V̂ϵðT; kÞ ¼ I ¼ V̂ϵð0; kÞ. The Z2-valued index K is
defined by the relation

Kϵ½U� ¼ degðV̂ϵÞmod2 ð7Þ
(remember that Vϵ is defined from U). This quantity is well
defined. The existence of contractions (6b), the independ-
ence of Kϵ½U� upon their choice, and the link with bundle
Kane-Mele invariants (1) will be discussed elsewhere (see
also Supplemental Material [36]). In a semi-infinite system,
Kϵ½U� should give the parity of the number of Kramers
pairs of edge states that lie in the corresponding bulk
quasienergy gap.
Result (1) greatly simplifies when spin is conserved. In

this case, the evolution operator U is block diagonal in the
ð↑;↓Þ basis and so is Vϵ. The two blocks are related by time
reversal and the K index can be related to the W index of
one of the spin blocks, namely,

Kϵ

��
U↑ 0

0 U↓

��
¼ Wϵ½U↑� −Wϵ½U↓�

2
mod2; ð8Þ

where Wϵ½U↑� ¼ Wϵ½ΘU↓Θ−1� ¼ −Wϵ½U↓�. This expres-
sion is reminiscent of the “spin Chern number” [37].
Indeed, when considering the difference between indices
at two quasienergy gaps, the usual spin Chern number is
recovered.
Relation to the Wess-Zumino amplitude.—The difference

Kϵ0 ½U� − Kϵ½U� is equal to the degree taken modulo 2 of the
map V̂ϵ;ϵ0 constructed as in (6) from Vϵ;ϵ0 ¼ e−2πitPϵ;ϵ0 ðkÞ=T .
Because of the relation ΘVϵ;ϵ0 ðt; kÞΘ−1 ¼ Vϵ;ϵ0 ðt;−kÞ−1,
the first half-period of time does not contribute to the
integral for degðV̂ϵ;ϵ0 Þ. The latter involves then only the
contribution of the contraction (6b) of Vϵ;ϵ0 ðT=2Þ. Up to a
factor, this contribution coincides with the Wess-Zumino
(WZ) action [38,39] of the UðNÞ-valued field
Vϵ;ϵ0 ðT=2; kÞ ¼ I − 2Pϵ;ϵ0 ðkÞ defined on BZ:

degðV̂ϵ;ϵ0 Þ ¼ −
1

2π
SWZ½Vϵ;ϵ0 ðT=2Þ�: ð9Þ

The action SWZ is normally determined modulo 2π but the
condition (6b) for V̂ϵ;ϵ0 makes it well-defined modulo 4π.
We infer then from (1) the identity

ð−1ÞKMðEϵ;ϵ0 Þ ¼ eði=2ÞSWZ½Vϵ;ϵ0 ðT=2Þ�; ð10Þ

relating the Kane-Mele invariant to the square root of the
Wess-Zumino amplitude. This identity holds also in the
static TRI case, providing a new expression for the 2D
Kane-Mele invariant of the valence sub-bundle of states.
Time-dependent lattice model.—We shall now illustrate

some of the basic properties of TRI periodic evolution
operators characterized by the K index with a simple time-
dependent lattice model. A natural starting point is to define
for spin ↑ states a periodic evolution possessing a non-
vanishing invariantWϵ inside a spectral gap, and to deduce
by time-reversal symmetry the evolution of spin ↓ states
with the opposite Wϵ. Moreover, to verify that for a finite
sample the index Kϵ gives the parity of the number of pairs
of edge states in the corresponding gap independently of
TRI gap-preserving perturbations, we add TRI spin flipping
couplings to the model. For simplicity we define a time-
step periodic dynamics such that, during each step α of the
evolution, the corresponding Hamiltonian Hα is constant
in time. One cycle of period T is split into four steps
ðα − 1ÞðT=4Þ ≤ t < αðT=4Þ so that the evolution operator
UðTÞ ¼ U4U3U2U1, where Uα ¼ expð−iHαT=4Þ. As the
initial dynamics of spin ↑, we consider a quantum analog of
walks along classical cyclotron orbits on a square lattice
[17,18]. We distinguish two sublattices A and B and define
the corresponding Hamiltonian for spin ↑ for the first step
α ¼ 1 as H↑↑

1 ¼ JTA→Bþx þ H:c:, where TA→Bþx is the trans-
lation operator by one horizontal lattice spacing from
sublattice A to B; see Fig. 2. HamiltoniansH↑↑

α are obtained
from H↑↑

1 by replacing the translation operator TA→Bþx by

TB→A
−y for H↑↑

2 , by TA→B
−x for H↑↑

3 , and by TB→Aþy for H↑↑
4 .

HamiltoniansH↓↓
α for spin ↓ states are deduced by TRI that

(a) (b)

FIG. 2 (color online). Representation of the time evolution.
(a) The only nonvanishing hopping amplitudes between sites are
represented for each time step α ¼ 1;…; 4 as a link labeled with
α. This is done for spin-up (red solid lines) and spin-down (blue
dashed lines). (b) The time sequence of Uα is summarized around
plaquettes, which mimics cyclotron orbits. Full and empty circles
represent the two sublattices.

PRL 114, 106806 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 MARCH 2015

106806-3



imposes H↓↓ðt; kÞ ¼ H̄↑↑ð−t;−kÞ. They correspond to
quantum evolution along orbits cycling in opposite direc-
tion. In this initial model, the index Kϵ associated to a
spectral gap of UðTÞ identifies modulo 2 with the indexWϵ

of the evolution of the ↑ states; see (8). This is no longer the
case when spin-flipping terms are added to the dynamics.
They are incorporated into the model by adding to the
Hamiltonian off-diagonal terms H↓↑

α obtained fromH↑↑
α by

replacing J by J0, together with H↑↓ðt;kÞ¼−H̄↓↑ð−t;−kÞ,
as imposed by the TRI constraint.
The evolution operator over one period UðTÞ is diagon-

alized for a strip geometry periodic in the x direction.
The quasienergies of the strip, together with the localization
of the eigenstates from each edge, are shown in Fig. 3.
Figure 3(a) clearly shows in the only gap at Tϵ ¼ π
the existence of one pair of helical boundary states at
each edge of the strip, although the KM index associated
with the unique band is necessarily zero. The quasienergy
gap does not close when J0 decreases to zero (see
Supplemental Material [36]). Consequently, the value Kπ

in the π gap remains unchanged and can be calculated
from (8). We find Kπ ¼ 1, in agreement with the number of
edge states.
Next, we consider a case with two bands, i.e., with two

gaps. To do so, we add a staggered on-site potentialΔ and a
fifth step α ¼ 5 with U5 ¼ I [18]. Two typical situations
are found and illustrate our formula (1), relating the
Kane-Mele invariant associated to each quasienergy band
and the index K associated to the 0 and π gaps. In Fig. 3(b)
[respectively, (c)] one pair of helical edge states appears in
the π gap (respectively, 0 gap). We find in perfect agree-
ment K0 ¼ 0 and Kπ ¼ 1 [Fig. 3(b)] and K0 ¼ 1, Kπ ¼ 0
[Fig. 3(c)] and the Kane-Mele invariants are nonzero for

each band. In contrast, Fig. 3(d) illustrates a situation
where one pair of edge states lies in each gap, in agree-
ment with K0 ¼ 1 and Kπ ¼ 1, so the Kane-Mele band
invariants vanish. This provides a TRI analog of the
periodically driven TR breaking phases characterized
with zero Chern band invariants but nonzero W gap
invariants [18].
Conclusions.—We defined a new index characterizing

topological properties of periodically driven 2D crystals
constrained by time-reversal invariance, relating it to the
Kane-Mele invariant of quasienergy bands for which we
found a new expression in terms of the Wess-Zumino
amplitude. This paves the way for a study of physical
properties associated to these topological states, such as
the out-of-equilibrium dc transport [16,40,41] by the edge
states that our analysis reveals. In particular, the search for
experimental signatures in electronic systems via transport
properties in a multiterminal geometry is a particularly
interesting direction for future investigations, but other
proposals such as a local probe by means of tunneling
current [42] are also conceivable. Various physical setups,
like anisotropic metamaterials [43], dielectric ring resona-
tors [44], or shaken optical lattices [45], seem to be good
candidates to achieve experimentally such topological
states as long as dissipation is not too strong. In particular,
a Floquet analog of the Kane-Mele model seems to be
achievable experimentally in a near future with cold atoms
by modulating simultaneously in time the trapping lattice
and a magnetic field gradient [29].

We acknowledge Clément Tauber and Mickael
Rechtsman for insightful discussions. This work was
supported by a grant from the Agence Nationale de la
Recherche (ANR Blanc-2010 IsoTop).

(a) (b) (c) (d)

FIG. 3 (color online). Quasienergy spectra of the TRI periodic evolution for a strip geometry (inset). The spectra reveal helical edge
states in the gap ϵ ¼ 0 or π. The parity of the number of pairs of edge states in a bulk gap localized on each boundary is given by the
corresponding value Kϵ. Colors correspond to the density of states along y: red and purple states are localized at opposite edges
(see inset). The parameters are (a) J ¼ 3π, J0 ¼ π, Δ ¼ 0, (b) J ¼ 3π=2, J0 ¼ 1=2, Δ ¼ π=2, (c) J ¼ −5π, J0 ¼ 1=2, Δ ¼ 9π=2,
(d) J ¼ 15π=2, J0 ¼ π, Δ ¼ 2π, For clarity, in the case (a), a small boundary mass term was added to distinguish edge states.
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