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We show both computationally and analytically that grain boundaries that exhibit shear-coupled motion
become morphologically unstable in solid alloys that phase separate into coherent domains of distinct
chemical compositions. We carry out simulations of continuum models demonstrating that this instability is
mediated by long-range elastic interaction between compositional domains and grain boundaries. In
addition, we perform a linear stability analysis that predicts the range of unstable wavelengths in good
quantitative agreement with simulations. In nonlinear stages, this pattern-forming instability leads to the
breakup of low-angle grain boundaries, thereby strongly impacting microstructural evolution in a wide
range of phase-separating materials.
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Grain boundaries (GBs) can strongly influence the
mechanical and functional behavior of a wide range of
crystalline materials and have been widely studied for this
reason [1,2]. The last decade, in particular, has witnessed
major progress in understanding and characterizing the
response of GBs to applied stress [3–15]. A key feature of
this response is the coupling between GB motion normal to
the GB plane and a shear deformation parallel to this plane,
characterized by the relation

v∥ ¼ βvn ð1Þ

between the GB normal velocity vn, and the velocity v∥ of
parallel grain translation, where β is a coupling factor that
depends on GB bicrystallography [3,4]. For low-angle GBs
consisting of individual dislocations, coupling follows from
the geometrical relation between dislocation glide motion
and crystal lattice translation [1,3]. For high-angle GBs
with atomically disordered intergranular structures, the
existence of this relation is less intuitive. However, remark-
ably, a wide range of high-angle GBs has been shown both
computationally and experimentally to exhibit coupling
[4–11], making it a general phenomenon. Coupling has
also been shown to influence the mechanical and coars-
ening behaviors of both small and large assemblies of
fine grains [9,12,13,16,17]. Those studies have focused
primarily on single-phase polycrystalline materials.
In this Letter, we highlight the fundamental role of GB

coupling in a different, albeit very common, situation
where stress is generated internally by phase separation
into domain structures of distinct chemical compositions.
Those structures can form by nucleation and growth of a
second phase precipitate inside the matrix of a primary
phase [18] or by spinodal decomposition into two phases,
which have been widely investigated in various contexts
[19–29]. Domain formation generates a coherency stress

due to the dependence of the crystal lattice spacing on
composition. This stress is theoretically understood to
influence spinodal decomposition differently inside the
bulk of a material [19] and near free surfaces that can
relax the coherency stress [27]. However, how coherency
stress affects GB evolution remains poorly understood
fundamentally. Here we demonstrate that a static planar
GB can become spontaneously unstable morphologically
due to its elastic interaction with compositional domain
boundaries (DBs) and its coupling behavior that provides a
stress relaxation mechanism. Importantly, the shear stress
that drives GB motion is generated by the instability itself,
as opposed to being externally applied as in the traditional
setting in which coupling has been primarily studied to
date [3–15].
We model the evolution of the concentration field using

standard conserved dynamics

∂tc ¼ M∇2
δF
δc

; ð2Þ

derived from an energy functional

F ¼
Z

dV

�
fdwðcÞ þ

K
2
j∇cj2 þ felðc;…Þ

�
; ð3Þ

which represents the total free-energy of the system.
The free-energy density is the sum of two parts. The first
chemical part of the Cahn-Hilliard form [30] is the sum
of a symmetric double-well potential fdwðcÞ with minima
at cþ0 and c−0 and a gradient square term, which together
determine the excess compositional DB free-energy γ. The
second part is the elastic contribution felðc;…Þ where “…”
signifies auxiliary variables used to model elasticity in
two ways. A first approach is a nonlinear elastic model
(NLEM) where the auxiliary variables are components of
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the strain tensor εij with the form of felðc; εijÞ chosen to be
periodic in εxy so as to naturally describe dislocation glide
for low-angle GBs on a simple cubic lattice [31,32]. This
form is also chosen to describe the interaction between
composition and stress such that, in the bulk crystal
away from dislocations, felðc; εijÞ ≈ 1

2
σijðεij − ε0ijcÞ where

ε0ij ¼ ε0δij is the dilatational stress-free eigenstrain that
incorporates a linear dependence of the lattice spacing on
composition (Vegard’s law), and elasticity is modeled
isotropically with shear modulus G and Poisson’s ratio
ν. In the second approach based on amplitude equations
(AE) [33–35], the auxiliary variables are complex ampli-
tudes An of density waves in an expansion of the crystal

density field nð~r; tÞ ¼ n0 þ δns
P

3
n¼1 2ℜ½Anei

~kn·~r�, where
ℜ denotes the real part. We choose the form of
felðc; fAng; fA�

ngÞ from Ref. [35] that also reduces to
isotropic elasticity with Vegard’s law in the bulk and the
set of principal reciprocal lattice vectors kn of the two-
dimensional hexagonal lattice. Both models also describe
dislocation glide and hence GB coupling via Eq. (1) with
β ≈ θ for small misorientation [3,4]. The AE approach has
the additional feature of also describing dislocation climb
as in the PFC model [36]. In both models, the mechanical
fields are relaxed on a much shorter time scale than the
composition field, such that the strain fields and the GB
position are always close to their equilibrium value on the
time scale of the precipitate evolution. Further details of
the models and simulations are given in [37].
Results of simulations illustrating the instability of a

low-angle symmetric tilt GB for a 7.12° misorientation are
shown in Fig. 1. These simulations are performed for a
generic set of materials parameters (c−0 ¼ 0.05, cþ0 ¼ 0.95,
G ¼ 40 GPa, ν ¼ 0.25, ε0 ¼ 4.3%, and γ ¼ 163 mJ=m2)
similar to the ones used to model phase separation in Li-ion
battery materials [27,38]. We focus on a geometry in which
a planar grain boundary is initially centered inside a
lamellar precipitate. This choice of geometry is physically
motivated by the fact that dislocations act as preferred sites
of nucleation [39–41] and, hence, GBs naturally seed the
formation of lamellar precipitates of this approximate
geometry [20,42]. Figure 1 shows that small sinusoidal
perturbations of both the GB and DBs become simulta-
neously amplified with the GB modulation being phase
shifted spatially by π=4 from the in-phase modulations
of both DBs. When the amplitude of the GB modulation
exceeds a critical value, the GB breaks up [Figs. 1(c)
and 1(g)] and dislocations become anchored at the pre-
cipitate interfaces, thereby relaxing the coherency stress.
The last frames of both simulations [Figs. 1(d) and 1(h)] are
similar, presenting zigzag shaped precipitates with serrated
interfaces due to the dislocations stress fields. Both
simulation methods yield identical initial destabilization
stages, which are mediated solely by dislocation glide, but
differ in the nonlinear stages after breakup. Without climb,

the NLEM simulation leads to a frustrated configuration
while with climb the AE simulation further relaxes this
configuration by adjustments of dislocation spacings. We
note that climb generally occurs on a much larger time scale
than glide in real systems, while these two mechanisms
occur on a comparable time scale in the AE simulations.
However, this difference affects neither the initial stage of
the instability, which is dominated by glide, nor the final
relaxed equilibrium configuration [Fig. 1(h)] that corre-
sponds to a global free-energy minimum.
The instability mechanism can be qualitatively under-

stood by noting that a small initial sinusoidal perturbation
of DBs of wavelength Λ depicted in Fig. 2 is stable in the
absence of GB inside the precipitate. This is because this
perturbation increases the total DB energy (¼ γ× total DB
length), but leaves the elastic energy unchanged since
elasticity is assumed isotropic and the entire solid domain
is periodic in x and infinite in y (Ly ≫ Λ). Therefore,
according to the Bitter-Crum theorem [43,44], the elastic
energy depends only on the volume of precipitate, which is

FIG. 1 (color online). Color plots of the composition field c at
different times increasing from top to bottom in NLEM (a),(b),
(c),(d) and AE (e),(f),(g),(h) simulations illustrating the destabi-
lization of a low-angle GB (θ ¼ 7.12°). Simulated domains
with periodic boundary conditions in x have a size Lx × Ly of
8w × 32w (7.8w × 11.3w) for NLEM (AE) where 2w is the initial
distance between compositional DBs (the vertical size of each
frame is smaller than Ly). See Supplemental Material [37] for full
movies of these simulations.
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constant by Eq. (2), but is independent of its shape.
In contrast, with a GB present, the elastic energy can be
decreased by the relaxation of the shear stress induced by
the DB perturbation along the GB plane (y ¼ 0) via GB
coupled motion. Therefore, we expect the existence of a
stability length Λs, such that long-wavelength perturbations
(Λ > Λs) are amplified by stress relaxation and short-
wavelength perturbations (Λ < Λs) are stabilized by the
DB energy γ. This mechanism bears some similarities with
the Asaro-Tiller-Grinfeld (ATG) instability [45,46], where
the destabilization of a film deposited on a substrate is
mediated by the relaxation of the normal stresses at the free
surface. The present instability presents, however, a differ-
ent geometry and is mediated by the relaxation of the shear
stress at the GB.
We now carry out a linear stability analysis to predict Λs

and we validate the prediction by simulations. We outline
the main steps of the analysis that treats the GB and DBs as
sharp interfaces and provide details in the Supplemental
Material [37]. We first calculate the nonperturbed solutions
of static elasticity for planar GB and DBs. Imposing the
continuity of displacements and stress vector components
Ti ¼ σijnj across the DBs, where n ¼ ½nx; ny� is the
interface normal, we find the elastic displacements

ūðmÞ
x ¼ 0 (m ¼ 1 to 4) and

ūð1Þy ðyÞ ¼ ε0
1 − ν

ðc−ðyþ wÞ þ cþwÞ;

ūðmÞ
y ðyÞ¼ ε0

1 − ν
cþy; m ¼ 2; 3

ūð4Þy ðyÞ ¼ ε0
1 − ν

ðc−ðy − wÞ þ cþwÞ;

ð4Þ

where the numbers in superscript refer to different regions
depicted in Fig. 2. The unperturbed chemical potential μ̄
is constant, and the compositions c̄� in each domain
differ from the minima c�0 of fdwðcÞ because of the

unperturbed stresses σ̄ðmÞ
xx and σ̄ðmÞ

yy that can be computed
from Eq. (4).
Next, we consider the perturbed problem where the

heights of the DBs and the GB perturbations are slowly
varying functions of x denoted by hðxÞ and HðxÞ, respec-
tively (Fig. 2). Wewrite accordingly the perturbed chemical
potential, displacement fields, and stress fields as μðmÞ ¼
μ̄þ ~μðmÞ, uðmÞ

i ¼ ūðmÞ
i þ ~uðmÞ

i , σðmÞ
ij ¼ σ̄ðmÞ

ij þ ~σðmÞ
ij , respec-

tively, where quantities with the superscript tilde are small
perturbed quantities. From a sharp-interface-limit analysis
of Eqs. (2)–(3) including stress effects, we obtain a set of
equations and boundary conditions governing the coupled
evolution of the perturbed fields and interfaces [37]:

∂t ~μ
ðmÞ ¼ D∇2 ~μðmÞ; m ¼ 1;…; 4; ð5Þ

~μDB ¼ −ε0ð ~σxx þ ~σyyÞ þ
γκ

Δc̄
; ⟦~μ⟧GB ¼ 0 ð6Þ

vDB ¼ −
M
Δc̄

⟦∂yμ⟧DB; ð7Þ

∂jσij ¼ 0; i ¼ x; y; ð8Þ

⟦ui⟧DB ¼ 0; ⟦Ti⟧DB ¼ 0; i ¼ x; y; ð9Þ

⟦ux⟧GB ¼ βHðx; tÞ; ð10Þ

⟦uy⟧GB ¼ 0; ⟦Ty⟧GB ¼ 0. ð11Þ

TðmÞ
x (x;Hðx; tÞ) ¼ 0; m ¼ 2; 3; ð12Þ

where D ¼ Mf00ðc̄�Þ is the solute diffusivity,
Δc̄ ¼ c̄þ − c̄−, and κ is the DB curvature. In addition,
double square brackets indicate the jump of a quantity across
a given interface type (GB or DB) labeled in subscript

(e.g., ⟦ ~μ⟧GB ¼ ~μð3ÞGB − ~μð2ÞGB ¼ 0).
To compute the stability spectrum, we assume a pertur-

bation of the form hðx; tÞ ¼ hieωkt sinðkxÞ and solve
Eqs. (5)–(12) to determine the amplification rate ωk of
perturbations. We first solve the elastostatic equations (8)
subject to known boundary conditions for the displacement
and stress fields at the GB and DBs. Those include, at the
DBs, the continuity of displacements and stress vector (9)
and, at the GB, the jump of tangential displacement (10)
that follows from the GB coupling relation (1) (see [10]),
the continuity of normal displacement and normal stress
(11), and (12) which assumes that the GB adapts its shape
instantaneously via coupling to completely relax the shear
stress on the GB. This assumption is physically justified by
the fact that diffusion-controlled DB motion is typically
much slower than dislocation-glide-mediated GB motion,
also valid for the NLEM and AE simulations. The solutions
of the elastostatic equations (8) for the perturbative

FIG. 2 (color online). Schematic representation of a GB
sandwiched between two perturbed compositional DBs distin-
guishing four regions (numbered 1 to 4) and displacement fields
used in the stability analysis. The horizontal arrows show the
directions of grain translation resulting from GB coupled motion
via Eq. (1), which relaxes the shear stress induced by the DB
perturbation.
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displacement fields ~uiðmÞ have 4 unknown constants in
domains (2) and (3), but only 2 unknown constants in
domains (1) and (4) due to the boundary conditions
~uið1Þð−∞Þ ¼ ~uið4Þðþ∞Þ ¼ 0. The 13 boundary conditions
(9)–(12) determine those 12 unknowns together with the
amplitude of the GB modulation. We obtain

Hðx; tÞ ¼ −
4hiε0Δc̄

β
e−kweωkt cosðkxÞ; ð13Þ

where the phase shift between the cosðkxÞ GB modulation
and the sinðkxÞ DB modulation, observed in simulations
(Fig. 1), is a direct consequence of the shear stress
relaxation on the GB plane.
The stability spectrum is now readily obtained by using

the elastostatic solutions to compute the stress contribution
to the shift of chemical potential on the two DBs using
the local equilibrium condition (6) evaluated at y ¼ �w.
This yields ~μDBðx; y ¼ �w; tÞ ¼ �ΓðkÞhðx; tÞ, where

ΓðkÞ ¼ 4Gε20Δc̄
1 − ν

ðke−2kw − 2d0k2Þ; ð14Þ

and terms ∼ke−2kw and ∼d0k2 represent the contri-
bution of stresses and DB curvature, respectively; d0 ¼
γð1 − νÞ=8Gε20Δc̄2 is a microscopic length that is the ratio
of the DB energy and an elastic energy (e.g., for the
parameters of the simulations d0 ¼ 0.297 nm). Solutions
of the diffusion equation (5) in different regions subject
to the conditions ~μDBðx; y ¼ �w; tÞ ¼ �ΓðkÞhðx; tÞ are

~μð1Þ ¼ ΓðkÞeqðyþwÞhðx; tÞ

~μðmÞ ¼ −ΓðkÞ sinhðqyÞ
sinhðqwÞ hðx; tÞ; m ¼ 2; 3;

~μð4Þ ¼ −ΓðkÞe−qðy−wÞhðx; tÞ; ð15Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ωk=D

p
. Finally, substituting those sol-

utions into the mass conservation condition (7), which
implies that vint ¼ ∂th ¼ ωkh, and using the quasistatic
approximation q ≈ k valid in the limit ωk ≪ Dk2 of our
simulations, we obtain

ωk ¼
MΓðkÞk

Δc̄
(1þ cothðkwÞ): ð16Þ

Confirming the qualitative picture of the instability
mechanism discussed earlier, long (short) wavelength per-
turbations for k < ks (k > ks) are unstable (stable). The
marginally stable mode corresponding to ωk ¼ 0 can be
computed analytically by setting ΓðksÞ ¼ 0, which yields

ks ¼
2π

Λs
¼ 1

2w
WLðw=d0Þ; ð17Þ

where WL is the Lambert function [47]. We compare in
Fig. 3 the analytical predictions of Eq. (16) for ωk, Eq. (17)
for ks, and the fastest growing wave number k0 computed
from Eq. (16) by solving dωk=dk ¼ 0, to results of
NLEM and AE simulations, where ωk was computed
by fitting the amplitude of sinusoidal perturbation of
interfaces to growing or decaying exponential functions of
time for different k’s. The comparison shows an excellent
quantitative agreement, thereby validating the analysis.
Furthermore, in the physically relevant limit where the
precipitate width is much larger than the microscopic
capillary length (w ≫ d0), the asymptotic behavior of
the Lambert function implies that ks ≈ ð1=2wÞ lnðw=d0Þ.
In addition, k0 is the solution of the transcendental
equation k0w½1þ cothðk0wÞ� ¼ 2, yielding k0 ≈ C=w
whereC is a numerical constant (C ¼ 0.797…). This implies
that in this limit the fastest growing wavelength Λ0 ∼ w,
while Λs ∼ w= lnðw=d0Þ ≪ Λ0. For w ∼ 100 nm and lower
misfit than simulated here, e.g., ε0 ¼ 0.2%, the above
relation yields the estimate Λs ∼ 1 μm. Since precipitates
typically extend spatially along the GB plane a distance of
the order of a few micrometers, the instability should also
appear for small misfits.
This instability should affect more strongly low angle

GBs because of the inverse relation between the GB
deformation amplitude H and β [Eq. (13)], causing the
breakup of GBs with small β in nonlinear stages as seen in
the simulations (Fig. 1). However, it will also impact

FIG. 3 (color online). (a) Comparison of dimensionless growth
rate ωkd20=ðGMÞ versus dimensionless wave number kd0 from
Eq. (16) (dashed lines) and from simulations of NLEM (full
symbols) and AE methods (hollow symbols). (b) Marginal (ks)
and fastest growing (k0) wave numbers (full lines) normalized by
d0 versus w=d0 and their asymptotic behaviors for w ≫ d0
(dashed lines).
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precipitate evolution in the presence of high-angle GBs
that couple as well as GBs exhibiting mixed coupling and
sliding or pure sliding [4,9,10]. This is because the growth
rate of instability (ωk) is independent of β and hence
misorientation as validated by simulations (Fig. 3). Hence,
a GB that purely slides will not deform but still relax a shear
stress leading to destabilization of DBs. Even though we
highlighted here the instability for lamellar precipitates,
a similar analysis shows that a GB adjacent to a single
DB belonging to a large precipitate is subject to the same
instability.
The present linear stability analysis is a first step towards

understanding the complex interaction between GBs and
precipitates formed by nucleation or spinodal decomposi-
tion in a wide range of two-phase materials. For example,
in Ni-Al superalloys, the nucleation and growth of γ0 GB
precipitates have been shown to be responsible for GB
serration [48,49]. Another example is the formation of
acicular Widmanstätten precipitates from GBs, common in
steel and Ti alloys. The nucleation and early stages of
growth of those precipitates remain largely unknown
despite recent clarifications of their stationary growth
regime [50]. We expect that it should be possible to
validate directly experimentally salient features of the
instability mechanism demonstrated in this Letter by
precise in situ observations of precipitate growth on GBs.
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