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The metallization of high-pressure hydrogen, together with the associated molecular to atomic transition,
is one of the most important problems in the field of high-pressure physics. It is also currently a matter of
intense debate due to the existence of conflicting experimental reports on the observation of metallic
hydrogen on a diamond-anvil cell. Theoretical calculations have typically relied on a mean-field
description of electronic correlation through density functional theory, a theory with well-known
limitations in the description of metal-insulator transitions. In fact, the predictions of the pressure-driven
dissociation of molecules in high-pressure hydrogen by density functional theory is strongly affected by the
chosen exchange-correlation functional. In this Letter, we use quantum Monte Carlo calculations to study
the molecular to atomic transition in hydrogen. We obtain a transition pressure of 447(3) GPa, in excellent
agreement with the best experimental estimate of the transition 450 GPa based on an extrapolation to zero
band gap from experimental measurements. Additionally, we find that C2=c is stable almost up to the
molecular to atomic transition, in contrast to previous density functional theory (DFT) and DFTþ quantum
Monte Carlo studies which predict large stability regimes for intermediary molecular phases.
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Hydrogen is the simplest and most abundant atom in
the Universe, yet its behavior at high pressures is one of the
most puzzling [1,2]. Being the lightest element in the
periodic table, its strong quantum nature at low temper-
atures and subtle electronic structure lead to very interest-
ing physics which include multiple orientationally ordered
molecular phases [3–5], a reentrant melting line [6–9], a
liquid-liquid phase transition [10–12], and a metal-insulator
transition accompanied with the possibility of exotic
physics including superconductivity [13] and a zero-
temperature liquid [14]. Describing the physics of these
processes and its equation of state with quantitative
accuracy is of critical importance to many areas of physics
including astrophysics, planetary science, material science,
and inertial confinement fusion research.
Because hydrogen is highly reactive and diffusive,

attempts to experimentally synthesize metallic hydrogen
in diamond-anvil cell experiments are difficult and some-
times produce conflicting predictions. It has been claimed
that metallic hydrogen may have been observed very
recently by Eremets and Troyan [15]. While these findings
have yet to be confirmed and are considered highly
controversial, they resulted in a significant increase in
attention on this regime of the phase diagram over the last
several years [16–22]. As a result, a new high-pressure
molecular phase was discovered at room temperature,
phase IV [3,23,24], and the phase boundaries between
the various molecular phases have been further clarified [4].
To date, the best experimental estimate of the location of

the metal-insulator transition at 0 K is at approximately
450 GPa [25]. This estimate was produced by extrapolation
of the band gap to zero as a function of pressure and assumes

that hydrogen remains in phase III up to the transition.
Because of hydrogen’s small x-ray scattering cross section, a
definitive determination of whether it remains in this phase
through the observed range is difficult. Determiningwhether
it remains in phase III beyond the experimentally accessible
regime must be done using ab initio methods. We do so by
providing an accurate equation of state to confirm the
validity of Loubeyre et al.’s extrapolations [25].
For a theoretical method to be predictive in this regime,

both electronic structure (e.g., electronic correlation) and
nuclear quantum effects (which are very strong) must be
treated accurately [26,27]. Because of its established
unmatched accuracy in bulk low-Z systems [11,28–30]
and its ability to capture many-body electronic correlation
[28,30–33], we used fixed-node diffusion Monte Carlo sim-
ulations to directly estimate ground-state energies, pressures,
enthalpies, and geometries of the atomic phases. To treat
nuclear quantum effects, we employ the quasiharmonic
approximation. Here, as well as in geometry optimization
for the molecular phases, we used density functional theory
(DFT) instead of diffusion Monte Carlo (DMC) calculation
for cost reasons. Unlike previous quantum Monte Carlo
(QMC) and DFT studies, however, we heavily use DMC
to benchmark the effect of DFT approximation on properties
like vibrational frequencies and ground-state enthalpies,
which allows us to somewhat mitigate this approximation
by choosing themost accurate functionals for our applications
and estimating the errors in doing so.
Our results show that the molecular to atomic phase

transition occurs around 447(3) GPa. Though we formally
observe this transition to be from C2=c → Cmca-12 →
Cs-IV, we find a small regime of stability for the Cmca-12
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phase of 24(4) GPa, in stark contrast to previous DFT and
QMCþ DFT studies which unambiguously predict one
or more intermediary molecular phases between C2=c →
Cs-IV. Interestingly, a vanishingly small or entirely absent
intermediary phase between C2=c and Cs-IV is in good
agreement with the assumption of a single molecular phase
in Loubeyre et al.’s extrapolation [25].
All QMC calculations were performed with the quantum

Monte Carlo package (QMPACK) [34]. We used the full
Coulomb potential and a Slater-Jastrow trial wave function.
The Jastrow term consists of one- and two-body B-spline
terms. We optimize all variational parameters using the
linear method [35]. The single-particle orbitals are gen-
erated using the QUANTUM ESPRESSO density functional
theory code [36]. We use the Perdew-Burke-Ernzerhof
exchange-correlation functional (PBE) [37] and a norm-
conserving pseudopotential with a cutoff radius of
0.5 bohr. To control for finite-size effects, we used
twist-averaged boundary conditions [38] in all DMC
calculations, with a 243 Monkhorst-Pack k-point grid for
the four-atom unit cell in the atomic phase and 63

Monkhorst-Pack k-point grid for the 96-atom unit cell in
the molecular phase. Simulation cells of various sizes
were used to extrapolate the energies to the thermodynamic
limit [39]. Pressures were computed using the extrapolated
virial estimator, as well as by differentiation of the energy.
DFT calculations were performed with the Vienna ab ini-

tio simulation package (VASP) [40,41].We used the projector
augmented wave (PAW) representation of VASP, with a PAW
constructed with PBE from their most recent release.
Geometry optimization and ground-state calculations were
performed for all structures on unit cells containing between
four and 48 atoms using plane-wave cutoffs of 1000 and
1500 eV for the geometry optimization and ground-state
calculations, respectively. Though different Monkhorst-
Pack k-point grids were used for different structures, we
ensured that energies and pressures were converged. All
zero-point energy (ZPE) calculations reported in this Letter
were calculated with the Phonopy code and were based on
the quasiharmonic approximation. All ZPE calculations on
the molecular phases employed 728 atoms, while all
calculations on the atomic phase employed 432 atoms.
We carefully tested that the resulting ZPEs were well
converged by using cells with up to 2592 and 1600 atoms
on the molecular and atomic phases, respectively.
To compute the location of the molecular to atomic

phase transition, we start with a selection of the most
important candidate structures for each phase and optimize
their geometries. On the atomic side, we selected the only
two competing phases: β − tin and Cs-IV. We performed
random structure searches with both the PBE functional
and the non-local dispersion corrected density functional
of Dion et al. (vdW-DF) [42] to look for new atomic
phases at pressures around 500 GPa and found no new
structure that is competitive with the ones considered in
this work.

Since both of these structures have only one variable
parameter in their geometry, namely, the c=a ratio, we
directly optimized their geometries with DMC calculations
at several volumes in the pressure range 450–800 GPa. On
the molecular side, we selected the three candidate phases:
C2=c,Cmca, andCmca-12. Two of these phases,C2=c and
Cmca-12, were discovered in the pioneeringwork of Pickard
and Needs [43] using ab initio random structure searching
with DFT (we refer the reader to this article for a detailed
description of the structures). These phases are three of the
leading candidate structures for phase III according to DFT
[19] and are the most promising alternatives close to the
molecular to atomic transition according to QMC calcula-
tions [44]. The large number of degrees of freedom in these
structures prevent us from a direct optimization of the
geometry with DMC. Instead, we optimized the geometries
and atomic positions at selected pressures using three
different DFT exchange-correlation functionals (vdW-DF,
vdW-DF2 [45], and PBE) and performed a detailed com-
parison of the resulting energies. This not only allows us to
choose the best structure out of three candidates with the
lowest QMC enthalpy, but it allows us to roughly establish
how the quality of optimized structures depends on the
choice of the density functional. For all structures and
pressures considered in this work, the vdW-DF functional
provided the best ground-state geometries. The difference in
enthalpy between structures optimized at similar pressures
with different functionals was found to be as large as
0.4 mHa=atom,with the structures produced by PBE always
consistently worse than those generated by either vdW-DF
or vdW-DF2. We refer the reader to the work of Clay et al.
[44] for a detailed analysis of the quality of various
density functionals on the molecular phase benchmarked
against DMC.
Figure 1 shows the enthalpy of the lattice with clamped

protons (without zero-point energy) for all the structures
considered in this work between 200 and 800 GPa. Our
QMC calculations show that the molecular to atomic
transition in the absence of ZPE occurs at 685(6) GPa,
following the sequence C2=c → Cmca-12 → Cs-IV.
In Fig, 2, we show the DFT clamped-nuclei cold curves

produced using the following functionals: PBE, the Heyd-
Scuseria-Ernzerhof hybrid functional based on PBEsol
exchange [46], the original Heyd-Scuseria-Ernzerhof
hybrid functional [47], vdW-DF, and vdW-DF2. Con-
trasting this with our QMC cold curve, we note several
quantitative and qualitative differences. Qualitatively, all
functionals predict the stability of the Cmca phase between
Cmca-12 → Cs-IV, which is unstable according to QMC.
Quantitatively, the onset of the molecular to atomic
transition varies wildly based on functional choice, differ-
ing from QMC and each other. According to PBE, the
transition occurs around 500 GPa between Cmca and
Cs-IV structures, which is around 185 GPa lower than
the QMC estimate. Both vdW functionals predict much
higher transitions than QMC, by almost 100 and 300 GPa
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for the vdW-DF and vdW-DF2, respectively. This amounts
to an uncertainty of about 500 GPa.
The results for the static lattice show the strong depend-

ence of the molecular dissociation pressure on the func-
tional’s relative accuracy in the metallic and molecular
states. However, no prediction can be made without a
careful treatment of the ZPE. As mentioned previously, an
accurate treatment of the ZPE with DMC is beyond the
current capabilities of the method. Instead, we must resort
to a more approximate treatment within DFT. To make the
task more complicated, the ZPE predicted by DFT is quite
dependent on the functional used on the molecular phase.
As described in the Supplemental Material [39], the
variations of the magnitude of the ZPE component with
DFT functional on the atomic side is on the order of
0.2 mHa=atom and basically independent of structure.
On the molecular side, the variation is bigger than
1.0 mHa=atom and can be as large as 2.0 mHa=atom.
In contrast to the atomic phase, intramolecular vibrations

provide the dominant contribution to the ZPE in the molecu-
lar phase. There is a strong variation in the description of the
molecular bond and the corresponding intramolecular poten-
tial between the different DFT functionals [39,44]. This
variation leads to the observed discrepancy on themagnitude
of the ZPE in each phase. Using correlated sampling
combined with the reptation quantum Monte Carlo, we
studied the dependence of the energy of the crystal with
molecular bond length. This allows us to optimize the bond
lengths withDMC and compare them against DFT results, as
well as to measure the curvature of the molecular potential at
the equilibrium bond length, which is directly related to the
vibrational frequency of themolecule and to themagnitude of
the ZPE. We find a direct correlation between the molecular
bond length, as predicted by DFT, and the magnitude of the
corresponding ZPE (see the Supplemental Material [39]).
The vdW-DF functional produces the best overall agreement
in all aspects of the molecular bond in hydrogen: the
magnitude of the bond length (accurate to ≈1%), pressure
dependence and the curvature of the intramolecular potential.
In contrast, PBE systematically underestimates the bond
length (by 5%) and ZPE, whereas vdW-DF2 overestimates

the bond lengths (by up to≈ 4%) and ZPE.We conclude that
vdW-DF provides the most accurate estimate of the ZPE in
these molecular phases due to its good agreement with QMC
and choose it to provide the ZPE contribution we use for our
QMC results.WhileHSE also offers a reasonable description
of the structural and vibrational properties of the solid, we
have not attempted to calculate the transition pressure with
ZPE from this functional.
Our main result, the total enthalpy (including the QMC

electronic contribution and DFT quasiharmonic ZPE) of all
the structures considered in this work, is shown in Fig. 3.
We find the transition from molecular C2=c to the
atomic Cs-IV phases to follow the progression C2=c →
Cmca-12 → Cs-IV, with transition pressures between
C2=c → Cmca-12 and Cmca-12 → Cs-IV occurring at
424(3) and 447(3) GPa, respectively. Note that the regime

FIG. 1 (color online). Static lattice enthalpy of molecular and
atomic phases relative to the molecular C2=c crystal. In the
absence of ZPE, the phase transition happens at 684(3) GPa.

FIG. 2 (color online). DFT electronic structure contribution to
enthalpy for five functionals: (a) PBE, (b) HSEsol, (c) HSE,
(d) vdW-DF, and (e) vdW-DF2.

FIG. 3 (color online). Enthalpy of molecular and atomic phases
relative to the molecular C2=c crystal. We find a phase transition
from molecular to atomic hydrogen at 439(3) GPa.
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of stability for the Cmca-12 phase is actually quite small—
about 24(4) GPa. Though this is statistically significant, the
enthalpy differences responsible for the stability of the
Cmca-12 phase are so small that the stability of Cmca-12
will be very sensitive to higher order effects, such as
anharmonic corrections to the ZPE. For this reason, in the
future we suggest investigating the direct molecular to
atomic transition C2=c → Cs-IV at a higher level of theory,
which would occur at 442(3) GPa in the absence of
Cmca-12 at the quasiharmonic level.
For comparison, we include the corresponding ZPE

corrected DFT total enthalpy plots for the PBE, vdW-
DF, and vdW-DF2 functionals in Fig. 4. ZPE contributions
shift the phase transition downwards between 200 GPa for
PBE to 400 GPa for vdW-DF2 and reduces but does not
eliminate the region of stability for the Cmca phase. The
resulting molecular disassociation transition ranges from
288 GPa for PBE to 617 GPa for vdW-DF2 with only the
vdW-DF function close to the QMC result at 461 GPa.
According to self-consistent GW calculations on static

lattices, theC2=cmolecular phase has a finite band gap at the
transition pressure (see the Supplemental Material [39] for
additional details). In contrast, Cmca-12 and Cs-IV are
expected to be metallic. Thus, our current work seems to
imply that at the quasiharmonic level, the insulator to metal
transition would coincide with the C2=c → Cmca-12
molecular transition.Nuclear quantum fluctuations have been
shown to have a strong influence on the band gap of solid
hydrogen [27] and a definite prediction of the pressure where
the band gap closes goes beyond the scope of this Letter.
Interestingly, our results disagree with previous QMC

studies on the structural transitions in solid hydrogen by
Azadi et al. [48–50]. We attribute this to several subtle
approximations in their work, which has been shown in this
and other works to be inadequate. Their use of the local

density approximation-based Kwee-Zhang-Krakauer
finite-size correction scheme introduces nonconsistent
errors in enthalpy differences of up to �0.5 mHa, depend-
ing on the structures and pressure. Second, they used PBE
to optimize their zero-temperature configurations, which
from Clay et al. [44] is shown to yield higher enthalpy
structures than vdW-DF. It is worth noting that according to
PBE, at low temperatures atomic hydrogen is stable at
pressures above 288 GPa, which is in complete disagree-
ment with experimental observations. PBE systematically
fails to accurately describe hydrogen close to the dissoci-
ation regime. On the one hand, it provides a very poor
description of the intramolecular interaction by greatly
overestimating the bond length and underestimating the
curvature of the potential (and, hence, the vibrational
frequency). On the other hand, it strongly reduces the
energy of the atomic phases relative to the molecular ones,
leading to very low transition pressures.
The promise of observing metallic hydrogen at low

temperature is within close reach of current experimental
techniques. Our calculation brings current ab initio predic-
tions for the molecular to atomic phase transition into much
better alignment with experiment. First, we find the molecu-
lar to atomic phase transition occurs around 447(3) GPa,
which agrees with previous experimental results and
Loubeyre et al.’s extrapolation [25]. Second, we find that
in contrast to previous DFTandQMCþ DFT studies, which
predict undeniably stable secondary molecular phases, the
C2=c phase is robust and stable almost all the way to
the molecular to atomic transition. At finite temperature,
the phase diagram could be more complicated due to the
existence of additional stable phases [19] and more compli-
cated physical processes including proton transfer [20].
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