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Roton-type excitations usually emerge from strong correlations or long-range interactions, as in
superfluid helium or dipolar ultracold atoms. However, in a weakly short-range interacting quantum gas,
the recently synthesized spin-orbit (SO) coupling can lead to various unconventional phases of super-
fluidity and give rise to an excitation spectrum of roton-maxon character. Using Bragg spectroscopy, we
study a SO-coupled Bose-Einstein condensate of 87Rb atoms and show that the excitation spectrum in a
“magnetized” phase clearly possesses a two-branch and roton-maxon structure. As Raman coupling
strengthΩ is decreased, a roton-mode softening is observed, as a precursor of the phase transition to a stripe
phase that spontaneously breaks spatially translational symmetry. The measured roton gaps agree well with
theoretical calculations. Furthermore, we determine sound velocities both in the magnetized and in the
nonmagnetized phases, and a phonon-mode softening is observed around the phase transition in between.
The validity of the f-sum rule is examined.
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The roton and phonon are two typical excitation modes
of superfluids. They were first introduced by Landau in his
phenomenological explanation on the superfluidity of
liquid helium [1,2], and an experimental observation was
realized about two decades later [3,4]. The emergence of
the roton mode in superfluid helium originates from strong
density correlations. In weakly interacting ultracold quan-
tum gases, the roton-maxon dispersion structures were
predicted in the systems with long-range interactions [5–8],
which were recently observed in the system of a Bose-
Einstein condensate (BEC) interacting with a cavity [9].
Across the phase transition from a superfluid to a super-
solid phase, a softening of the roton mode was further
demonstrated [9]. An important question naturally arises:
can an excitation spectrum of roton-maxon character be
observed in a quantum gas with weak and short-range
interactions?
Recently, artificial one-dimensional spin-orbit (SO) cou-

pling has been synthesized in ultracold bosonic [10,11] and
fermionic [12,13] atoms by two counterpropagating Raman
lasers that couple the momentum of an atom to its spin [14].
The single-particle dispersion is significantly modified
such that a degenerate double-well structure appears for
some Raman-coupling strength Ω. Despite the fact that
interatomic interactions are weak and short ranged, these
systems can exhibit many unconventional condensate
phases. For 87Rb atoms, as Ω increases, the ground-state
phase diagram is predicted to include [15,16] a stripe
phase of periodic density fringes that breaks translational
symmetry, a “magnetized” phase breaking a discrete Z2

symmetry, and a nonmagnetic phase. This rich structure of
phase diagram has been largely supported by experiments
[10], and its finite-temperature analog has also been
explored [17].
This recent very significant experimental progress in

manipulating SO coupling paves the way to addressing
the aforementioned question. It is recognized that super-
fluids with a tendency towards periodic order can have
phonon- and roton-type excitation modes. In a SO-coupled
condensate of 87Rb atoms, the occurrence of the stripe
phase preceding the magnetized phase indicates that the
excitation spectrum in the latter exhibits a roton-maxon
structure [18–20]. As the phase boundary is approached,
a roton-mode softening is further expected. In this work,
we experimentally demonstrate such a structure and, thus,
provide the first direct experimental observation of the
roton mode and its softening in weak and short-range
interacting systems.
The experimental setup is sketched in Fig. 1(a), showing

much similarity to our previous work [11,17]. A BEC of
about 1.5 × 105 87Rb atoms is prepared in a crossed dipole
trap with frequency ω ¼ 2π × f45; 45; 55g Hz. A bias
magnetic field along the z axis is applied to generate the
Zeeman splitting. The two counterpropagating Raman
lasers with wavelength λΩ ¼ 803.2 nm and relative angle
θΩ ¼ 105° are applied to couple the three internal states
of the F ¼ 1 manifold to generate the SO coupling. In
addition, the SO-coupled BEC is illuminated by two Bragg
beams with parallel polarization, which are symmetric
about the y axis.
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By a relatively large quadratic Zeeman shift, the
jmF ¼ 1i state can be effectively eliminated, and the
system can be regarded as a spin-1=2 system. The single-
particle Hamiltonian along the SO coupling direction (the x
direction) is given by (ℏ ¼ 1)

H0 ¼
ðkx − krσzÞ2

2m
þ δ

2
σz þ

Ω
2
σx; ð1Þ

where kr ¼ ð2π=λΩÞ sinðθΩ=2Þ is the recoil momentum of
Raman coupling, m is the atom mass, Ω is the Raman
coupling strength, δ is the two-photon detuning, which is
fine tuned to be δ ¼ 0 in the experiment, and σz and σx
represent the Pauli matrices, with jmF ¼ −1i for spin j↑i
and jmF ¼ 0i for spin j↓i. For each given kx, Eq. (1) has
two eigenstates with energy EþðkxÞ > E−ðkxÞ for the upper
(þ) and the lower (−) branch of single-particle dispersion
[20,21], respectively. The lower branch has two degenerate
minima for Ω < 4Er (Er ¼ k2r=2m), denoted by �kmin

[kmin ¼ kr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩ=4ErÞ2

p
], and has a single minima at

kx ¼ 0 for Ω > 4Er. With interatomic interactions of 87Rb
atoms being taken into account, it has been shown [10,16]
that atoms condense in a superposition state ðjþkmini þ
j− kminiÞ=

ffiffiffi
2

p
for Ω < 0.2Er, exhibiting the stripe order.

For 0.2Er < Ω < 4Er, the system maintains the magnet-
ized phase, where atoms condenses at kmin or −kmin. When
Ω > 4Er, the single-particle dispersion has only one single
minimum at zero momentum, and the Bose gas, hence,
exhibits no magnetization, i.e., the nonmagnetized phase.
The excitation spectrum of the magnetized phase is

measured through Bragg spectroscopy [22–27]. The BEC
is prepared at the spin state jmF ¼ −1i. TheRaman coupling
strength Ω is adiabatically ramped up to the desired value,
and the condensate is loaded to the dressed state −kmin; see
the Supplemental Material [28]. Then, we quickly switch on
two Bragg lasers for 1–2 ms. The Bragg beams are set with
wavelength λB ¼ 780.24 nm and 6.8 GHz detuned away
from the resonance. The angle θ between the two lasers
[Fig. 1(a)] determines the momentum transfer qx ¼
2kB sinðθ=2Þ (kB ¼ 2π=λB), while the frequency difference
ω is tuned to produce an excitation. The Bragg pulse kicks a
small percent of atoms out of the condensate cloud. The
intensity of the Bragg lasers is adjusted to excite at most 20%
atoms, such that the linear response theory applies [29].
Finally, with the Stern-Gerlach technique, we take spin-
resolved time-of-fight (TOF) images after 24 ms of free
expansion. Three typical examples forΩ ¼ 2Er are shown in
Figs. 1(b)–1(d). The angle between the two Bragg beams is
set to θ ≈ 86°, with the momentum transfers jqxj ¼ 1.77kr,
close to the separation

ffiffiffi
3

p
kr of the twominima of the single-

particle dispersion. Note that Figs. 1(c) and 1(d), with the
same qx value but different ω values, correspond to excita-
tions to different energy branches. Furthermore, the spins of
atoms in Fig. 1(c) flip when being kicked out from the
condensate by the Bragg pulse. This is due to the lock of spin
and momentum [21].
For each TOF image, the atom numbers in the Bragg

cloud and the remaining condensate, NB and Nc, are
counted, and the ratio Pðqx;ωÞ≡ NB=ðNB þ NcÞ is calcu-
lated. For a given momentum transfer qx, a broad range of
frequency difference ω is scanned with the Rabi frequency
ΩB of the Bragg beams being fixed at an appropriate value.
For Ω ¼ 2Er, Figs. 1(b3)–1(d3) show the plot of the
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FIG. 1 (color online). Experimental setup and Bragg spectros-
copy. (a) In the x-y plane, there are a pair of Raman lasers with
relative angle 105° and two Bragg beams separated by an angle
3° ≤ θ ≤ 180°, which can produce a momentum transfer in the
x direction with 0.07kr ≤ jqxj ≤ 2.60kr. A bias magnetic field
in the z direction generates the Zeeman splitting. [(b)–(d)] Spin-
resolved TOF images (b1)–(d1), schematic diagrams of
excitations (b2)–(d2), and excitation efficiency Pðqx;ωÞ in
(b3)–(d3) for Ω ¼ 2Er, with θ ¼ 86°, jqxj ¼ 1.77kr. The ellipses
mark atoms kicked out by the Bragg pulse. The excitation
frequencies ω are, respectively, −7.38 kHz (b1), 0.23 kHz
(c1), and 9.60 kHz (d1). The color bar in the second row
indicates the spin proportion of each dressed state. The curves
in (b3)–(d3) correspond to the Gaussian fits.

PRL 114, 105301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 MARCH 2015

105301-2



excitation efficiency Pðqx;ωÞ versus frequency difference
ω, for qx ¼ −1.77kr (red triangles) and 1.77kr (purple
circles and gray diamonds). It can be seen that there are two
resonance peaks for momentum transfer qx ¼ 1.77kr,
corresponding to the lower and upper branches of the
excitation spectra, respectively. The measured data are
fitted by a Gaussian curve, and the peak frequency is used
to identify the excitation energy (see the Supplemental
Material [28]). All the whole excitation spectra for a fixed
Raman coupling Ω are then constructed by varying
momentum transfer qx; see Fig. 2(a) for Ω ¼ 2Er.

The lower branch of the excitation spectrum in the
magnetized phase clearly shows a roton-type minimum at
finite momentum around qx ¼ 2kmin [see Fig. 2(b)]. We
measure the roton gapΔ, defined as the excitation energy at
the roton minimum, and find it softens as Raman coupling
strength decreases [Fig. 2(c)]. We calculate the roton gap
based on a modified Bogoliubov theory [19,20], and the
results are shown as the red solid curve in Fig. 2(c). The
experimental data agree well with theoretical calculations.
As mentioned above, for 87Rb atoms, there is a phase
transition near Ω1 ≈ 0.2Er between the magnetized and the
stripe phase, and accordingly, the roton gap is expected to
vanish at Ω1. Unfortunately, our experimental data are not
sufficiently accurate to figure out the precise location ofΩ1.
On the other hand, we do find that the roton-maxon
structure disappears when Ω is tuned above a large enough
value (about 3.4Er in our experiment), suggesting that the
roton mode is a precursor of the stripe phase with periodic
fringes.
The observed softening of the roton gap can find its

origin in a Raman-dressed interaction. In the presence of
SO coupling, interatomic interaction becomes anisotropic
[30], and this anisotropy can be tuned by varying Ω [31].
This can be revealed by calculating the interaction energy
for a condensate of different components. As shown in
Ref. [10], for 87Rb atoms, we have interaction energy EI ≈
1=2

R
d3rfðc0 þ c2=2Þ½n↑0 ðrÞ þ n↓0 ðrÞ�2 þ c2=2½n↑0 ðrÞ2−

n↓0 ðrÞ2� þ ðc2 þ c0Ω2=8E2
rÞn↑0 ðrÞn↓0 ðrÞg, where the spin-

independent interaction c0 ¼ 7.79 × 10−12 Hz cm3, the
spin-dependent interaction c2 ¼ −3.61 × 10−14 Hz cm3,
and n↑0 ðrÞ and n↓0 ðrÞ respectively represent the spatial
density of the components at −kmin and kmin. This means
that the interaction energy for a condensate of two dressed
components �kmin has additional energy terms compared
to the energy for a single-component condensate at kmin or
−kmin. Accordingly, one can give an estimation of the roton
gap as Δ ≈ c0nðΩ −Ω1Þ2=16E2

r for Ω > Ω1 with n for the
condensate density and Ω1 ≈ 0.2Er.
We also measure sound velocities both in the magnetized

and in the nonmagnetized phase and find a softening of the
phonon mode near the phase transition between these two
phases. In the magnetized phase, the excitation spectrum
exhibits linear dispersions in the long wavelength limit, i.e.,
EBðqxÞ ¼ −c1qx for qx < 0 and EBðqxÞ ¼ c2qx for qx > 0;
see Fig. 2(b). Here, c1 (c2) is the sound velocity in the
negative (positive) x direction. The measured velocities c1
and c2 are almost identical for a given Ω (Fig. 3), since the
interaction difference in 87Rb atoms is very small [19]. The
values of c1 and c2 decrease as Ω is enhanced and reach a
minimum near the phase transition Ω2 that is slightly above
4Er, as shown in Fig. 3. For Ω > Ω2, heating from Raman
lasers makes it difficult to adiabatically load BEC into the
minimum, and the condensate starts to oscillate in the trap
during the Bragg pulse. To minimize effect of the induced
Doppler shift, the sound velocity in the nonmagnetized
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FIG. 2 (color online). Excitation spectrum and roton mode
softening. (a) Excitation spectrum for Ω ¼ 2Er. The two
branches of spectra are clearly seen and agree well with
theoretical calculations (blue and red solid curves) based on a
modified Bogoliubov theory. (b) Zoom in of the low-energy part
(dashed box) of the excitation spectrum in (a), which clearly
shows a roton-maxon structure. (c) Softening of roton mode. The
measured roton gap Δ (circles) becomes smaller as Ω decreases
and vanishes for small Ω.
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phase is taken as the average of the values for qx < 0 and
qx > 0. Nevertheless, it is still clear that the sound velocity
increases with the coupling strength.
The nonmonotonic behavior of the sound velocity as

shown in Fig. 3 can be interpreted by the modification of
single-particle dispersion. With the effective-mass approxi-
mation, the sound velocity cs (c1 ¼ c2 ¼ cs is assumed)
can be written as cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gn=m�p

[20]. Here, the effective
massm� is given bym� ¼ mð1 −Ω2=16E2

rÞ−1 forΩ < 4Er

and m� ¼ mð1 − 4Er=ΩÞ−1 for Ω > 4Er. This shows that
the vanishing of sound velocity originates in the divergency
of the effective mass at Ω ¼ 4Er, which marks the
transition point between the magnetized and the non-
magnetized phase. However, the Bose gas in our experi-
ment is not a pure spin-1=2 system. Because of the
influence of the suppressed state jmF ¼ 1i, the value of
sound velocity cannot drop to zero and the transition point
is shifted to about Ω ¼ 4.3Er (Fig. 3).
Phonon mode softening indicates that at the transition

point, the Bose gas should exhibit no superfluidity when an
impurity moves inside with finite velocity in the SO
coupling direction. It should be pointed out that due to
the absence of Galilean invariance [11] in a SO-coupled
system, a moving SO-coupled Bose gas has a different
excitation spectrum from what we measure in Fig. 2, and

softening of the phonon mode is prevented in the comoving
frame [20].
To illustrate the validity of the Bragg spectroscopy in

SO-coupled systems, we examine the sum rules [29], which
concern the moments of the dynamic structure factor,
defined as MpðqxÞ≡

R
ωpSðqx;ωÞdω, where p ≥ 0 is

an integer. The zeroth-order moment for p ¼ 0 relates to
the static structure factor as M0ðqxÞ ¼ NSðqxÞ with N the
number of atoms, which reflects the excitation probability
by Bragg scattering with momentum transfer qx. In
Fig. 4(a), we plot SðqxÞ for Ω ¼ 2Er as a function of qx
(the red circles), where SðqxÞ is normalized so that its
maximum is equal to unity. The blue circles in Fig. 4(a)
represent the contribution S−ðqxÞ from the lower branch of
the excitation spectrum. The theoretical calculations based
on local density approximation (shown as the solid lines)
agree with experimental data, except for those three points
with very small momentum transfer qx. The relative
contribution S−ðqxÞ=SðqxÞ is shown in the inset of
Fig. 4(a), which rapidly decreases as the momentum
transfer becomes larger. The famous f-sum rule is about
the energy-weighted moment M1ðqxÞ and states that
M1ðqxÞ ¼ Nq2x=2m, where m is the mass of the atom.
The validity of the f-sum rule in a SO-coupled system has
been theoretically examined in Ref. [19]. The measured
first moment M1ðqxÞ for Ω ¼ 2Er is plotted versus qx in
Fig. 4(b). These experimental data can be well described by
a quadratic curve, demonstrating the validity of the f-sum
rule at least in the magnetized phase.
We have shown that despite interatomic interactions that

are weak and short-ranged, the SO-coupled 87Rb conden-
sate has an excitation spectrum of roton-maxon character in
the magnetized phase, which softens near the phase
transition to the stripe phase. The sound velocities are also
measured, and a phonon-mode softening is observed. We
mention that in condensed-matter physics and ultracold
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atomic physics, the measurement of excitation spectrum is
in itself of an important role in revealing the properties of
low-temperature phases [32]. The observed linear dispersion
near qx ¼ 0 is an important feature of superfluidity.
Furthermore, the measured roton-maxon structure of exci-
tation spectrum, its disappearance for large Ω, and the
softening of the roton gap strongly support the predicted
ground-state phase diagram for the SO-coupled Bose gas of
87Rb atoms.
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