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A theory of the collapse of a punctured antibubble is developed. The motion of the rim of air formed at
the edge of the collapsing air film cannot be described by a potential flow and is characterized by high
Reynolds numbers. The rim velocity is not constant but gradually decreases with time and is determined
by the balance between the surface tension and hydrodynamic drag forces. A collapse equation is derived
and solved. The agreement between the theory and existing experiments is shown.
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An antibubble is a thin spherical gas film containing and
being surrounded by a liquid. It is a peculiar antipode to
an ordinary bubble, a spherical liquid film with a gas inside
and outside. The study of antibubbles has a relation to the
physics of films, interfaces, foams, bubbles, and drops [1].
The formation of antibubbles differs from the cavitation of
bubbles: antibubbles are generated by gently dripping or
pouring a surfactant solution onto the surface of the same
solution. Antibubbles were seemingly observed in 1931
during the investigation of soap drops on a water surface
[2]: some of the drops sank under the water surface and
showed interference colors; from this observation the
authors concluded that they had observed drops surrounded
by a soap film. The existence of the air film was mentioned
later [3], and the objects studied were referred to as
“inverted soap bubbles” [4] or “inverse bubbles” [5].
The term “antibubble” was coined by Pavlov-Verevkin
in his Russian paper entitled “Soap Antibubbles” in 1966
[6]. Interest in antibubbles was revived in 2003, when the
formation and collapse of antibubbles and the development
of the concomitant fluid instabilities were observed with a
high-speed video camera [7]. Since then the stabilization
of antibubbles [8,9], optimal conditions for the antibubble
formation [10], and antibubble lifetime distribution [11–14]
have been studied. The formation of an “antidrop,” an
object similar to an antibubble but in which a liquid phase
replaces the air film, was also observed [15]. Antibubbles
not only allow one to observe and study new fast micro-
hydrodynamic phenomena but also are interesting by their
potential applications [16,17].
Recently, a new experimental study of the collapse of an

antibubble was conducted [18], in which an attempt was
made to find the factors that determine the velocity of the
edge of the shrinking air film after puncturing the anti-
bubble with a pin. The authors concluded that this velocity
is virtually constant. However, the earlier experimental data
[7] definitely show that the velocity decreases during the
collapse. This surprising paradox poses a question about
our understanding of the antibubble collapse and requires

a proper theoretical description of the phenomenon, still
absent despite the existing experiments. The purpose of
this Letter is to develop the theory of the antibubble
collapse. In particular, the theory solves the above paradox,
reveals what actually determines the collapse velocity, and
shows that the antibubble collapse differs from the rupture
of liquid films.
Figure 1 shows a scheme of a collapsing antibubble. The

antibubble of thickness d and radius R is punctured at point
P at time t ¼ 0. In the experiment [18] the characteristic
values for the antibubble thickness and radius are d ≈ 3 μm
and R ≈ 4 mm, respectively; therefore, we will assume that
d ≪ R. After puncturing, the liquids inside and outside the
antibubble come into contact with each other at point P and
the air film, originally closed, starts shrinking due to the
surface tension of the liquid. The film shrinking results
in the appearance and expansion of a circular hole in the
antibubble. The collapsing air film is axisymmetric with

FIG. 1 (color online). Scheme of a collapsing antibubble.
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respect to polar axis OP, where O is the center of the
antibubble, so that the center O0 of the hole always remains
at OP while moving from starting point P to diametrically
opposite point Q.
The edge of the hole represents a rim that contains all the

air from the collapsed part of the antibubble. We assume,
for simplicity, that the cross section of the rim by the plane
passing through OP is a circle of radius a; then the rim
is a torus. Consideration of the rim makes sense if a ≫ d.
We also assume that a ≪ R, which can be rewritten
as amax ≪ R, where amax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dR2=π3

p
is the maximum

rim radius that corresponds to the torus of maximum
volume 2π2a3max ¼ 4πR2d.
The position of the rim is given by polar angle θ, the

angle between polar axis OP and radial vector OP0, where
P0 is a point at the guiding circle of the torus. Equating the
volume of the rim, Vrim ¼ 2π2a2R sin θ, to the volume of
the collapsed air film, Vcol ¼ 2πR2dð1 − cos θÞ, yields the
dependence of the rim radius on θ:

a ¼ a0

ffiffiffiffiffiffiffiffiffiffi
tan

θ

2

r
; ð1Þ

where a0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
dR=π

p
is the semicollapse rim radius, the

rim radius corresponding to θ ¼ π=2, when the first hemi-
sphere of the antibubble has disappeared. The volume
conservation condition is utilized in Refs. [7,18] to estimate
the thickness of the antibubble; the possibility of using this
condition is experimentally shown in Ref. [18]. Equation (1)
makes sense for θ from the range θmin ≪ θ ≤ θmax, where
θmin ¼ 2d=πR and θmax ¼ π − amax=R. The first inequality
is necessary for the possibility of neglecting the difference
between using θ and the more correct value θ þ a=R in
calculatingVcol; it is in fact equivalent to the aforementioned
inequality a ≫ d. The angle θmax in the second inequality
corresponds to the torus of maximum volume, so that
aðθmaxÞ ¼ amax.
The rimmoves in the liquidwith velocityv ¼ Rdθ=dt.We

assume that the rim is sufficiently thin: a ≪ R sin θ. If this
condition is satisfied, the flow about the rim is quasi-two-
dimensional. This condition implies the above condition
a ≪ R and can be violated only at the final stage of the
collapse, when the polar angle is close to π. Thus, we should
assume that π−θ≫ a=R, or equivalently π − θ ≫ π − θmax;
this means that θ should not be very close to θmax.
Denote by ρ the mass density and by η the dynamic

viscosity of the liquid. We can then define the correspond-
ing Reynolds number Re ¼ 2avρ=η. Experimentally [18],
ρ ∼ 103 kgm−3, η ∼ 10−3 Pa s, v ∼ 1ms−1, and a can be
estimated via d and R as a ∼ a0 ∼ 60 μm; therefore,
Re ∼ 120. The flow about the cylinder at such Re is
characterized by the existence of the von Kármán vortex
street [19] and is obviously nonpotential due to the
existence of vortices.
Note in this connection that the assumption about the

flow potentiality was used in Ref. [18] and allowed the

authors, after some order-of-magnitude estimations, to
obtain a constant velocity of the rim, v ∝

ffiffiffiffiffiffiffiffiffiffi
σ=ρd

p
, where

σ is the surface tension. We conclude that the potential flow
about the rim is not realized and that the above formula
is inapplicable in the experimental conditions of Ref. [18].
Particularly, v need not be constant, which resolves the
paradoxmentioned in the introduction. Thus, the antibubble
collapse is characterized by a nonpotential, vortical flow
with high Reynolds numbers, and it is necessary to study
which factors actually determine the velocity of the rim.
The motion of the rim is due to the surface tension. The

surface tension force acting upon the unit segment of the rim
is Fσ ¼ 2σ, with 2 due to the existence of two interfaces
between the air film and liquid. This force is counterbal-
anced by the hydrodynamic drag forceFd ¼ Cdρv2a, where
Cd is the drag coefficient. For simplicity we will assume
the drag coefficient constant, which implies relatively
high Reynolds numbers; we may choose Cd ≈ 1.1—the
typical drag coefficient for a circular cylinder at 300 ≤ Re ≤
2 × 105 [20]. We also restrict ourselves to considering
only the two mentioned forces, and the comparison with
experiments will show a posteriori that other possible
forces do not make a significant contribution.
The above balance between the forces can be qualita-

tively interpreted as thus: the surface energy of the
collapsing air film turns into the kinetic energy of the
liquid behind the rim. If the unit segment of the rim has
moved the unit distance, the energy of the disappeared air
film is 2σ whereas the volume of the liquid is 2a; the kinetic
energy in this volume is ∼ρv2a because the typical energy
density is ∼ρv2=2. The balance between the two energies
is equivalent to the condition Fσ ¼ Fd with Cd ∼ 1. Such
consideration makes sense only for Re ≫ 1.
From Fσ ¼ Fd with use of Eq. (1) we obtain the rim

velocity as a function of θ:

v ¼ v0

ffiffiffiffiffiffiffiffiffiffi
cot

θ

2

4

r
; ð2Þ

where

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ

Cdρa0

s
ð3Þ

is the semicollapse rim velocity, which corresponds to
θ ¼ π=2. We immediately see from Eq. (2) that the rim
velocity is not constant and decreases with time because θ
obviously increases during the collapse.
Let us discuss an interesting question: Why is the rim

velocity found in Ref. [18] constant if the hydrodynamic
drag force vanishes in a potential flow due to d’Alembert’s
paradox while the surface tension force is nonzero? The
authors consider the balance between the rate of increasing
the kinetic energy of the potential flow about the rim and
the rate of decreasing the surface energy. Since the energy
of potential flow about the cylinder of unit length is
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mav2=2, where ma ¼ ρπa2 is the added mass [21], the
former rate results in the action of an added mass force.
This force is, however, not the usual added mass force ma _v
due to acceleration, which vanishes, but the reactive force
_mav due to increasing the added mass of the rim. That is
why the result of Ref. [18], v ∝

ffiffiffiffiffiffiffiffiffiffi
σ=ρd

p
, is similar to that

of Ref. [22]: in such a consideration the air film behaves
similarly to a liquid film with a massive rim.
Actually, the situation is quite different: the flow is

nonpotential, and the hydrodynamic drag force is not only
nonzero but alsomuch larger than the addedmass force. Both
the velocity and the added mass change with time, so we
estimate the latter force as Fa ¼ dmav=dt. It follows from
Eqs. (1) and (2) that Fa=Fd ¼ ð3π=4CdÞða=R sin θÞ ≪ 1.
Therefore, the collapse of an air film is not similar to the
collapse of a liquid film.
Let us define a typical time characterizing the collapse,

T ¼ R=v0, and a dimensionless time τ ¼ t=T. From Eq. (2)
we then get the collapse equation

dθ
dτ

¼
ffiffiffiffiffiffiffiffiffiffi
cot

θ

2

4

r
; ð4Þ

where θ is considered as a function of τ. Thus, Eq. (4)
determines the time dependence of θ.
First find the semicollapse time t0, the time of the

disappearance of the first hemisphere of the antibubble.
Integrating

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðθ=2Þ4

p
over θ from 0 to π=4 yields the

dimensionless semicollapse time τ0 ¼ βð5=8Þ ≈ 1.209,
where βðxÞ¼ ½ψ(ðxþ1Þ=2)−ψðx=2Þ�=2, ψðxÞ¼dlnΓðxÞ=
dx is the digamma function, and ΓðxÞ is the Euler gamma
function [23]. The semicollapse time is then t0 ¼ τ0T.
Second find the collapse time tcol, the time of the

disappearance of the whole antibubble. Integratingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðθ=2Þ4

p
over θ from 0 to π=2 yields the dimensionless

collapse time τcol ¼ πsecðπ=8Þ ≈ 3.400 [23]. The collapse
time is then tcol ¼ τcolT. We see again that the collapse
gradually slows down: tcol=t0 ≈ 2.812 > 2.
Now we turn our attention to the time dependence of θ.

With the substitution yðθÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðθ=2Þ4

p
we derive an

analytical solution of the collapse equation [Eq. (4)] in
the form τ ¼ τðθÞ:

τðθÞ ¼ cos
π

8

X1
n¼0

�
2 arctan

�
yðθÞ csc π

8
þ ð−1Þn cot π

8

�

þ ð−1Þn ln
�
yðθÞ2 þ ð−1Þn2yðθÞ sin π

8
þ 1

��

− sin
π

8

X1
n¼0

�
2 arctan

�
yðθÞsec π

8
þ ð−1Þn tan π

8

�

þ ð−1Þn ln
�
yðθÞ2 þ ð−1Þn2yðθÞ cos π

8
þ 1

��
: ð5Þ

This solution is presented in Fig. 2.

The exact solution [Eq. (5)] is rather cumbersome, and
we need a tractable analytical fit to easily work with the
inverse function θ ¼ θðτÞ. We see directly from the
collapse equation [Eq. (4)] that θ has asymptotics

θðτÞ ¼

8><
>:

2ð5τ=8Þ4=5; τ → 0;

π=2þ ðτ − τ0Þ; τ → τ0;

π − 2½3ðτcol − τÞ=8�4=3; τ → τcol:

ð6Þ

We then construct a fit θ̂ðτÞ to the exact solution θðτÞ
from the condition that θ̂ðτÞ satisfies the exact asymptotics
[Eq. (6)]:

θ̂ðτÞ ¼

8><
>:

A0τ
4=5ð1 − AταÞ; 0 ≤ τ ≤ τ0;

π − B0ðτcol − τÞ4=3
×½1þ Bðτcol − τÞβ�; τ0 < τ ≤ τcol;

ð7Þ

where A0 ¼ 2ð5=8Þ4=5 ≈ 1.373, B0 ¼ 2ð3=8Þ4=3 ≈
0.5408, α¼ð2π=5− τ0ÞðA0τ

4=5
0 −π=2Þ−1≈1.703, β ¼

ðτcol − τ0 − 2π=3Þ½π=2 − B0ðτcol − τ0Þ4=3�−1 ≈ 3.069,
A ¼ ð1 − π=2A0τ

4=5
0 Þτ−α0 ≈ 1.260 × 10−2, and B ¼

½π=2B0ðτcol − τ0Þ4=3 − 1�ðτcol − τ0Þ−β ≈ 1.846 × 10−3. The
inset in Fig. 2 shows the accuracy of the fit: the absolute
error θ̂ − θ < 4 × 10−4 ≈ 0.02∘ and the relative error
ðθ̂ − θÞ=θ < 0.02%. We see that the constructed fit
[Eq. (7)] is of high accuracy and hence can be used instead
of the exact solution [Eq. (5)].
Figure 3 shows the data from Ref. [7] on the time

dependence of polar angle θ and the theoretical curve
θ̂ðt=TÞ (A). We observe a good agreement between the
theory and experiment. Least squares fitting gives the
characteristic time T ¼ 18.06� 0.08 ms (standard error

FIG. 2 (color online). Polar angle θ against dimensionless time
τ—exact solution [Eq. (5)] of the collapse equation [Eq. (4)]. Inset:
absolute (a.e.) and relative (r.e.) errors of fit [Eq. (7)] against τ.
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shown), from which we calculate the semicollapse time
t0 ¼ 21.8� 0.1 ms and collapse time tcol ¼ 61.4� 0.3 ms.
Figure 3 also shows the data from Ref. [7] on the time

dependence of angle velocity dθ=dt and the theoretical
curve fcot½θ̂ðt=TÞ=2�g1=4=T (B). We again observe a good
agreement, and we can independently calculate T from
these data: T ¼ 16.8� 0.5 ms. This value is consistent
with the above value, but has a much higher uncertainty
because the experimental error of dθ=dt is much higher
than that of θ. These errors can be estimated from the
respective fits: σθ ≈ 0.02 and σdθ=dt ≈ 7 s−1, and corre-
spond to the typical relative errors δθ ≈ 1.3% and δdθ=dt ≈
12% (calculated at the semicollapse point, where θ ¼ π=2
and dθ=dt ¼ T−1). Thus, due to smaller experimental
errors, the data on the time dependence of θ contain more
precise information about various temporal characteristics
of the collapse.
Figure 4 shows the data from Ref. [18] on the time

dependence of rim velocity v and the theoretical curve
v0fcot½θ̂ðt=TÞ=2�g1=4, where v0 ¼ R=T and R ¼ 3.80 mm
(A). From least squares fitting we have T ¼ 4.1� 0.2 ms
and the semicollapse rim velocity v0 ¼ 0.93� 0.05 ms−1,
and we estimate the absolute and relative experimental
errors as σv ≈ 0.2 ms−1 and δv ≈ 21%. These data are
consistent with the fact that the rim velocity gradually
decreases with time and do not require that it is constant.
Reference [18] also contains a chronological sequence

of images of the collapsing antibubble [Fig. 2 therein].
I process these images in a manner shown in the inset
in Fig. 4 to obtain the data on the time dependence
of r=R, where r is the distance between the center O of
the antibubble and the center O0 of the circular hole in the
air film (Fig. 1). Note that the rim is not clearly visible
in the images because its small radius is much less than
the antibubble radius. These data, with error bars from

irregularity of the air film edge, and the theoretical
curve cos θ̂ðt=TÞ are presented in Fig. 4, curve (B), and
again demonstrate a good agreement between the
theory and experiment. Weighted least squares fitting gives
more precise values than above: T ¼ 3.9� 0.1 ms and
v0 ¼ 0.97� 0.03 ms−1.
Very significantly, we can independently find the semi-

collapse rim velocity v0 directly from Eq. (3): using the
experimental values d ¼ 2.95 μm, ρ ¼ 992 kgm−3, and
σ ¼ 0.033 Nm−1 [18], and putting Cd ¼ 1.1, we obtain
v0 ¼ 1.01� 0.05 ms−1, which is consistent with the two
above values. This consistency confirms that the temporal
development of the collapse observed in the experiment is
correctly described by the theory, without fitting but from
the known physical parameters.
When choosing Cd, we have considered the drag force

acting upon a solid cylinder, with no-slip boundary con-
ditions. Meanwhile, the rim is made of air, and free-slip
boundary conditions may be more suitable, but result in
remarkably decreasing Cd [24]. On the other hand, we have
the air rim not in pure water but in a soap solution, and
surfactant molecules adsorb at the interface. Because of the
film of surfactant molecules, an ordinary bubble exper-
imentally behaves at Re ≪ 1 not as an air ball with free-slip
conditions but as a solid ball with no-slip conditions
[25,26], and a similar effect may be expected in the case
of the rim. However, the effect can be reduced because
the boundary of the moving rim goes into the two fixed
interfaces of the air film before the rim. Thus, it is
reasonable to consider Cd as an adjustable parameter.
We have seen that Cd ∼ 1 agrees with the experimental

data and hence could argue in favor of no-slip conditions.
Interestingly, the theory allows us to calculate Cd from

FIG. 3 (color online). Polar angle θ (A) and angle velocity
dθ=dt (B) against time t—experimental data [7] (balls and
circles) and theoretical curves (solid lines).

FIG. 4 (color online). Rim velocity v (A) and distance between
antibubble and hole centers, r, over radius R (B) against time
t—experimental data [18] (triangles and balls) and theoretical
curves (solid lines). Inset: r and R on the image [18] for the third
data point.
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experiment with the help of Eq. (3). I propose to study
experimentally how Cd depends on various physical
parameters of the antibubble and on the surfactant con-
centration, which can shed some light on the problem of
boundary conditions.
In conclusion, I have developed the theory of the

collapse of an antibubble. After the antibubble is punctured,
the air film starts shrinking due to the surface tension of the
liquid, which results in the appearance and expansion of a
circular hole in the antibubble. The collapse is character-
ized by a nonpotential flow about the rim that forms at
the edge of the shrinking air film, and the flow has high
Reynolds numbers. The rim velocity does not vary linearly
with

ffiffiffiffiffiffiffiffiffiffi
σ=ρd

p
and is not constant; therefore, the collapse of

an antibubble differs from the rupture of a liquid film [22].
The velocity gradually decreases with time and is deter-
mined by the balance between the surface tension and
hydrodynamic drag forces acting upon the rim. The
collapse occurs so that the surface energy of the collapsing
air film turns into the kinetic energy of the liquid behind
the rim. I have derived and solved the collapse equation, the
solution of which gives the time dependence of the polar
angle and describes the temporal development of the
collapse. I have demonstrated the agreement between the
theory and currently available experimental data. In regard
to an interesting problem of single bubble sonolumines-
cence [27–29], I propose to study how the antibubble
collapse occurs in the presence of an acoustic field.
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