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By considering gauge transformations on the macroscopic Maxwell’s equations, a two-dimensional
gauge field, with its pseudomagnetic field in the real space, is identified as tilted anisotropy in the
constitutive parameters. We show that the optical spin Hall effect with broadband response and one-way
edge states become possible simply by using anisotropic media. The proposed gauge field also allows us to
obtain unidirectional propagation for a particular pseudospin based on the Aharonov-Bohm effect. Our
approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials
with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.
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Artificial magnetism from nonmagnetic constituents has
been showing great promise in light manipulation, particu-
larly in the optical regime where the magnetic effect is
weak. One possible way to realize artificial magnetism is to
consider the “Lorentz force” of a photon in the geometrical
optics limit. While the spin-orbit coupling of light can
induce a pseudomagnetic field in the momentum space in
giving rise to the optical spin Hall effect [1–4], recent
research works show that it is possible to realize a
pseudomagnetic field in the real space instead. It comple-
ments the refractive index gradient, the pseudoelectric field
in the Lorentz force, and provides an additional degree of
freedom for designing optical devices through the noncon-
servative nature of the magnetic force. Most of the current
approaches are based on a photonic lattice of coupled
resonators or waveguides. Then an effective gauge field is
generated by either making the coupling direction depen-
dent through optical path difference [5–7], dynamic modu-
lation [8–12], or making the coupling inhomogeneous
through a strain [13]. While these “bottom-up” approaches
have experimentally confirmed the existence of the pseu-
domagnetic field in the real space, one is curious to ask
whether there is a material realization of such pseudofields;
in particular, we have flexible metamaterials to realize any
required prescriptions of material parameters in a spatial
profile [14–26]. Such an approach allows us to scale down
the required structures to the subwavelength regime, and to
have broadband response if necessary.
In this work, we consider gauge transformations on the

macroscopic Maxwell’s equations. While it is common to
associate the refractive index to the scalar potential for a
photon, such a “top-down” approach allows us to also
directly associate the gauge field, or the pseudovector
potential, to the constitutive parameters. We will show
that the gauge field corresponds to a particular type of
anisotropy, i.e., tilted anisotropy, in the permittivity and

permeability tensors. It splits the originally degenerated
local dispersion surfaces of two opposite pseudospins.
Then the gauge field can be implemented by flexible
metamaterials with subwavelength unit cells. This abstrac-
tion, in a similar spirit to transformation optics (TO),
provides an additional way to bend light and enables a
versatile and macroscopic approach in designing various
optical devices, including the TO ones, such as invisibility
cloaks and optical illusion devices [14–26].
For simplicity, we consider two-dimensional in-plane

wave propagations on the x-y plane with both material
parameters and fields invariant in the z direction. The fields
have two polarizations and can be described by a 2 × 1
column vector (Ez; iHz), indicating the z components of the
electric and magnetic fields, while the in-plane transverse
fields are denoted by (ET; iHT). We begin our discussion
by considering a specific class of field transformations (FT)
in “rotating” polarization [27]:

�
Ez

iHz

�
¼
�
cos k0ϕ − sin k0ϕ

sin k0ϕ cos k0ϕ

��
Eð0Þ
z

iHð0Þ
z

�
;

�
ET

iHT

�
¼
�

cos k0ϕ sin k0ϕ

− sin k0ϕ cos k0ϕ

��
Eð0Þ
T

iHð0Þ
T

�
; ð1Þ

where the fields and the tensors discussed later with
(without) superscript “(0)” denote the relevant objects
before (after) transformation, k0 ¼ 2π=λ0 is the wave
number in vacuum, and the function ϕ indicates the degree
of polarization rotation at each location. While applications
in TO (and also in Ref. [27]) explore the difference between
the two configurations before and after transformation (e.g.,
in changing size, polarization signature of an object in
perception), here we purposely dismiss the polarization as
an internal degree of freedom. The FT in Eq. (1) is regarded
as a (unitary) symmetry operation to keep jEzj2 þ jHzj2 and
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also the in-plane Poynting vector invariant. This is similar
to the discussion of gauge symmetry of the Schrödinger
equation in quantum mechanics that multiplying the wave
function ψ by local phase shift expðiϕÞ keeps jψ j2 and also
the probability current density invariant so that standard
procedures in identifying gauge fields can be adopted in the
following. In our case, a constant FT is a so-called global
symmetry of the vacuum Maxwell’s equations; i.e., the FT
with constant ϕ leaves the vacuum Maxwell’s equations
invariant. This global symmetry can actually be extended to
the macroscopic Maxwell’s equations with any media
being coordinate transformed from vacuum within the
TO framework, with equal permittivity and permeability
tensor

¯̄ϵð0Þ ¼ ¯̄μð0Þ ¼
 ϵxx ϵxy 0

ϵxy ϵyy 0

0 0 ϵzz

!
:

We still call this medium the “free space” with global
symmetry. Next, we promote the global symmetry to a local
one by considering a spatially varying ϕ. According to
Ref. [27], a FT with spatially varying ϕ introduces an
addition to the constitutive tensors by

Δ ¯̄ϵ ¼ −Δ ¯̄μ ¼
 

0 0 ∂yϕ
0 0 −∂xϕ∂yϕ −∂xϕ 0

!
; ð2Þ

as a choice of induced material transformation so that the
Maxwell’s equations are kept form invariant. (Note that
global symmetry can also be verified byΔ ¯̄ϵ ¼ Δ ¯̄μ ¼ 0with
constant ϕ.) Therefore, the transformed medium goes
outside the original free space and has a form of con-
stitutive tensors

ϵ
¼ ¼

 ϵxx ϵxy Ay

ϵxy ϵyy −Ax

Ay −Ax ϵzz

!
;

¯̄μ ¼
 ϵxx ϵxy −Ay

ϵxy ϵyy Ax

−Ay Ax ϵzz

!
; ð3Þ

where A ¼ Axx̂þ Ayŷ ¼ ∇ϕ is recognized as the pure
gauge field; i.e., it is still equivalent to the free space. For
completeness, we apply the FT with spatially varying ϕ
again in Eq. (3), but now with arbitrary A such that the
associated field strength Beff ¼ ∇ ×A is generally non-
zero. In this case, the transformation in Eq. (2) is actually
still valid [27]. The transformed medium is again in the
form of Eq. (3) as a local symmetry while A is transformed
according to

A → Aþ∇ϕ; ð4Þ

which is therefore identified as the gauge transformation
with arbitrary A, now being called the gauge field. In our
case, the Maxwell’s equations (in Heaviside-Lorentz units)
are decoupled into pseudo-spin-up (-down) ψþ=− ¼ Ez �
Hz (a similar definition of pseudospin is found in
Ref. [28]):

ð∇� ik0AÞ · 1
m
· ð∇� ik0AÞψ þ k20ϵzzψ ¼ 0; ð5Þ

where

m ¼
�

ϵyy −ϵxy
−ϵxy ϵxx

�
;

which plays a similar role to the mass in the Schrödinger
equation. Therefore, the wave equation of the transformed
medium stays the same with respect to the one without
gauge field through the notion of a 2D covariant derivative
∇ → ∇� ik0A, as expected in a gauge theory. An imme-
diate implication is that the local dispersion surfaces split
by k → k� k0A, a common signature of a real-space gauge
field [12]. This gauge field provides an alternative way to
manipulate light by shifting the centers rather than varying
the sizes or shapes of the local dispersion surfaces. On the
other hand, if we consider the ray trajectory at a fixed
frequency in the geometrical optics limit, an additional
magnetic force that is perpendicular to the ray direction
and proportional to Beff arises. For example (also for all
examples in this work), we set ϵxx ¼ ϵyy ¼ ϵzz ¼ n,
ϵxy ¼ 0, and simply call n the index of the medium.
Then the ray equation (see Supplemental Material for
the development [29]) can be written as

d
ds

�
n
dr
ds

�
¼ ∇n∓ŝ × Beff ; ð6Þ

where s measures the arc length of the ray, r and ŝ denote
the position vector and the propagating direction of a point
on the ray. The equation, with the right-hand side being
interpreted as the Lorentz force for a photon, is an extended
version of the ray equation describing a photon propagating
in a gradient index medium of isotropic indices [30].
The additional term arises from Beff , which can now be
interpreted as a pseudomagnetic field (pointing along the z
direction) while A can be interpreted as the gauge field.
Such a pseudomagnetic force, having the same magnitude
but opposite signs for the two pseudospins, provides spin-
dependent bending of the photon trajectory.
The above treatment is inspired by previous efforts in

gauging the electromagnetic duality from vacuum while
now with material parameters as potentials [31]. Moreover,
if we gauge the electromagnetic duality within macroscopic
Maxwell’s equations, nontrivial gyrotropic media are
required (see Supplemental Material [29]). However, our
choice of FT, also a kind of duality operation, is specially
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designed for 2D and has an advantage that the gauge field
can be materialized by purely reciprocal and anisotropic
media. This media, different from the TO media without
gauge fields, is called tilted anisotropic media here. They
can be constructed by reciprocal anisotropic metamaterials,
e.g., split rings with one principal axis tilted away from the
z axis by 45 deg (see Supplemental Material [29] for details
and also for a reduced parameter approximation). Our
approach can thus be potentially pushed to optical frequen-
cies and to have broadband response.
First, we show that the materialization of the pseudo-

magnetic field using anisotropic media allows the demon-
stration of optical spin Hall effect (cf. the similar effect
induced by a pseudomagnetic field in momentum space
[1–4]) when a photon travels in a region of constant Beff ¼
B0ẑ (with B0 ¼ 0.1) for r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ r0 (with

r0 ¼ 6.5, the black circle in Fig. 1) while there is no
pseudomagnetic field outside the region. The whole
medium has a constant index n ¼ 1, and we fix the
nonunique A (from the prescribed Beff ) by choosing the
Coulomb gauge with

A ¼
�
1=2B0rϕ̂ ðr ≤ r0Þ
1=2B0r20=rϕ̂ ðr > r0Þ; ð7Þ

where ϕ̂ is the unit vector in the angular direction. We have
performed full-wave simulations (using COMSOL

MULTIPHYSICS) for the propagation of a Gaussian beam
(of wavelength 0.4 and beam width 1.6) within such a
medium. Within the region of nonzero Beff , the beam with
spin-up [Fig. 1(a)] (spin-down [Fig. 1(b)]) is bent in the
anticlockwise (clockwise) direction. It undergoes a circular
motion with radius of n=B0 (¼10, the red curve). Within an
area of zero magnetic field (when the beam exits), the
modes exhibit no bending forces and will keep propagation
with negligible deflection. Such bending effect [Eq. (6)] is
broadband in nature (see Supplemental Material [29]). We
note that it is also possible to induce polarization splitting
by applying TO individually to the TE or TM polarizations,
e.g., in designing beam splitters and multifunctional devi-
ces [32,33] without the additional bending effect from

spin-orbit interaction. In our approach, we associate gauge
field or vector potential directly to material parameters. It is
also possible to construct vector potential using spatial
derivative of bianisotropic or gyromagnetic material param-
eters [28,34], but it will rely on the semiclassical correction
to geometrical optics with a less prominent effect (see
Supplemental Material [29]).
The magnetic force (here from spatially shifting local

dispersion surfaces) allows wave guiding with a very
different mechanism. For example, with an interface
between regions of opposite pseudomagnetic fields, the
photon can be guided on the interface, as an edge state [9],
with the two opposite bending forces illustrated in the ray
picture [see Fig. 2(a)]. It supports a one-way transport
mode, which can travel around sharp corners without
backscattering. We have simulated such a phenomenon
in Fig. 2(c). The whole domain (with constant n ¼ 1) has
three different regions with constant pseudomagnetic fields
of B1 ¼ 2 (the inner region), B2 ¼ −2 (the ring), and
B3 ¼ 0 (outside). The required materialization of the gauge
field is again fixed (numerically) by the Coulomb gauge
[29]. A point source located at a position near the interface
(the solid dot) emits a spin-up photon (with a free space
wavelength of 2), which travels to the right and bends
around the corners without reflection. We have also
obtained the dispersion diagram, shown in Fig. 2(b), of
this edge state on the flat surface (see Supplemental
Material for more details [29]), where γ ¼ jB1j ¼ jB2j is
the magnitude of the pseudomagnetic field on the two
sides. Black (red) curves show the spin-up (spin-down)
modes. They are mirror copies (kx → −kx) of each other,
resulting from the time-reversal symmetry respected by
our system. The flat bands [largely negative (positive) kx

FIG. 1 (color online). The mode ψþ=ψ− bends in the (a) anti-
clockwise and (b) clockwise direction in the pseudomagnetic
field region r ≤ 6.5 (the black circle) where Bz ¼ 0.1.

FIG. 2 (color online). (a) Edge state with ray picture (black
arrows). (b) Dispersion diagram of the edge state for the two spins
ψþ (black lines) and ψ− (red lines) when γ ¼ jB1j ¼ jB2j.
Simulated one-way transport of the edge state (ψþ) for
(c) B1 ¼ 2, B2 ¼ −2 and (d) B1 ¼ 2, B2 ¼ −4.
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for spin-up (spin-down)] with k0=γ around odd numbers are
the odd and even mode combinations of the cyclotron
modes on the two sides approaching the so-called Landau
levels with little (evanescent wave) coupling. They evolve
and with more prominent splitting (e.g., at larger values of
kx for the spin-up) to form the waveguide modes. The upper
(lower) mode has odd (even) symmetry about the interface.
The horizontal dashed line in Fig. 2(b) indicates the
frequency for the simulation in Fig. 2(c) with free-space
wavelength λ0 ¼ 2. For spin-up excitation, it has two
modes with kx ≈ 4.3k0 and kx ≈ 5.3k0. They beat together,
forming the wiggling pattern, and propagate only to the
right, as shown in Fig. 2(c). The one-way transport can
work for different frequencies as well. As the excitation
frequency changes, we can still find edge modes in the
dispersion diagram for k0=γ > 0.59. Furthermore, the one-
way transport is also possible when jB1j ≠ jB2j. Figure 2(d)
shows the asymmetric case when B2 is changed to −4. The
two sets of flatbands (the Landau levels) on the two sides
split (see Supplemental Material [29]), the working fre-
quency (the horizontal dashed line) in this case only cuts
the band of the lower guiding mode, so that the one-way
transport is observed without beating [see Fig. 2(d)]. We
note that the phenomenon for the spin-down mode is
completely opposite (one-way transport to the left) for
the same medium.
Apart from modifying the photon trajectory, there is an

additional geometric phase ϕg along the propagation in the
case of a nonzero pseudomagnetic field. For a round-trip,
ϕg is given by

ϕg ¼ ∓
I
∂Σ

k0A · dr ¼ ∓k0

Z Z
Σ
Beff · dΣ; ð8Þ

where ∂Σ denotes the ray trajectory and Σ denotes the
enclosed area (with second equality obtained by Stokes
theorem). The upper (lower) sign corresponds to the mode
ψþðψ−Þ. In other words, the propagation phase now
becomes path dependent, as the so-called photonic
Aharonov-Bohm effect in this tilted anisotropic media
(another approach is based on dynamic modulation, see
Ref. [8]). The significance of Eq. (8) is that the geometric
phase is only related to the enclosed magnetic flux even
though there is no pseudomagnetic field along the ray
trajectory (see Supplemental Material [29] for the discussion
and additional results on Aharonov-Bohm effect). In another
perspective, the phase difference is created due to the
additional anisotropy A we put into the medium. If this
gauge field has a nonconservative nature, we can have a
path-dependent phase. Based on this, we can actually design
devices with nontrivial profile of A (instead of generating A
from specified pseudomagnetic fields) directly.
As the final example, we employ the path-dependent

geometric phase to obtain unidirectional propagation for
the spin-up mode by coupling a ring resonator with nonzero

A to a straight waveguide [Fig. 3(a)]. The ring resonator
has an inner (outer) radius of 4 (5), touching a straight
waveguide of unit height. The free-space wavelength here
is fixed at 5.5 while the index of the waveguide and the ring
is designed to resonate at n ¼ 2.4 so that a guiding mode
initially traveling along the straight waveguide is com-
pletely reflected and scattered (same for both forward
incidence and backward incidence), with a transmission
dip (gray color) when we vary n in Fig. 3(b). Then, we add
a constant Aϕ ¼ 0.08 (as tilted anisotropy) pointing in the
anticlockwise direction wherever inside the ring. It adds
(subtracts) a geometric phase for the spin-up modes
propagating in the clockwise (anticlockwise) direction.
This splits the resonating condition of the ring resonator,
or equivalently the forward (left to right) and backward
transmission curve, as shown as the black and red curves in
Fig. 3(b). Then, when we shift to work at n ¼ 2.45 (the
position of the forward transmission dip), the backward and
forward spin-up guiding modes have nearly unit and zero
transmission (Tb ≅ 0.95, Tf ≅ 0.01) with a large contrast
[Figs. 3(c) and 3(d)]. We note that the system here has
decoupled spin-up (spin-down) mode propagation. We
have assumed the device is working with spin-up wave
so that the unidirectional functionality is defined with
respect to the fundamental spin-up mode of the waveguide
in both forward and backward directions. Scattering from
other elements are assumed to preserve spin. It is in contrast
to the usual discussion of isolators that the backward
propagation mode is the time-reversed copy of the forward
propagation mode. Our system is still reciprocal, and the
time-reversed copy of the forward spin-up propagation
mode actually goes to the backward spin-down propagation

(a) (b)

(c) (d)

FIG. 3 (color online). Unidirectional propagation for spin-up
mode (ψþ). (a) Schematic of design. (b) Power transmittance Tf
(Tb) for forward (backward) incidence versus the waveguide
index n when Aϕ ¼ 0.08. The gray line shows the symmetric
transmittance when Aϕ ¼ 0. Field patterns (ψþ ¼ Ez þHz) for
(c) forward incidence and (d) backward incidence when Aϕ ¼
0.08 and n ¼ 2.45.

PRL 114, 103902 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 MARCH 2015

103902-4



mode. The gauge transformation approach proposed here
can be further combined with TO to provide an additional
way to bend light, e.g., to design a cloak as a possible
example [35,36].
In conclusion, we have proposed a scheme to realize the

gauge field in the real space for photon propagation using
reciprocal anisotropic media. Such a materialization using
anisotropic media allows us to design optical devices
enabled by the additional bending power from pseudo-
magnetic fields or the path-dependent geometric phase
introduced by a nontrivial gauge field. As illustrations, we
have demonstrated optical spin Hall effect, one-way trans-
port of edge states and unidirectional propagation using
tilted anisotropic media.

This work was supported by the European Union’s
Seventh Framework Programme under Grant Agreement
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