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We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The
synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical
cavity. We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes
indefinitely, even in the presence of spontaneous emission and other sources of individual-atom dephasing.
This could have important consequences for atomic clocks and a wide range of precision metrology
applications.
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The precision currently achievable by atomic clocks is
remarkable; for example, the instability of state-of-the-art
optical lattice clocks lies in the realm of 10−18 [1,2]. The
pursuit of even more stability is motivated by the potential
benefit to a wide range of fields in the physical and natural
sciences, facilitating progress in diverse areas such as
redefinition of the system of physical units in terms of
time [3], clock-based geodesy [4], gravitational wave
detection [5], and tests of fundamental physics and cos-
mology [6,7]. Atomic clock developments have also
enabled spin-off applications, including precision measure-
ments [8], quantum state control [9], and investigations of
quantum many-body physics [10,11].
Atomic clocks typically operate using the method

of Ramsey spectroscopy (RS) [12]. As shown in Fig. 1,
RS consists of three steps: (i) the initial preparation of
a coherent superposition between two quantum states,
(ii) accumulation of a phase difference between the atoms
and a local oscillator reference over an interrogation time T,
and (iii) mapping of the phase difference to a population
readout. Conventional RS is based on independent-atom
physics, with the role of a large number of atoms entering
only through improving the signal by statistical averaging.
The performance of RS is limited by the atomic coherence
time, which causes decay of the fringe visibility as a
function of T. Because of this decay, an optimal strategy
is typically used that involves setting T to be of the order
of the coherence time, and filling up the total measurement
interval τ by repeated RS cycles [13]. This gives an
uncertainty in the frequency difference between the atoms
and local oscillator that scales as 1=ð ffiffiffiffiffiffi

Nτ
p Þ, with the

ffiffiffiffi
N

p
coming from the quantum projection noise at each readout.
This scaling τ−1=2 is much worse than the fundamental
Fourier limit τ−1.
There are two paths to improving on the standard limit

for RS, apart from simply increasingN. First, the projection
noise can be reduced by preparing spin-squeezed states
[14,15]. Pursuing this direction, there have been numerous

efforts to produce spin squeezing in various physical
situations [16–23]. It is worth pointing out that entangled
states are often fragile and sensitive to decoherence
processes, which may limit their potential for providing
significant improvements to the sensitivity [24,25]. Second,
one can increase the coherence time of atoms. One
approach has been to increase the dephasing time of
magnetically and optically trapped atomic ensembles by
spin self-rephasing induced by the exchange interaction
between two identical particles [26,27]. In recent lattice
clock experiments [2], the atomic dephasing time T2 has
been pushed to ∼1 s. Even if further technical improve-
ments are made, there is a fundamental upper limit to the
atomic coherence time provided by the lifetime, T1, of the
long-lived excited clock state (∼160 s for 87Sr) [28].
In this Letter, we propose an approach to RS that is more

robust against decoherence. Our idea is to use atoms that
resonantly exchange photons with a heavily damped single

FIG. 1 (color online). (a) Conditional Ramsey spectroscopy
where synchronized atoms are coupled collectively to a cavity
and pumped individually with incoherent rate w during the
interrogation time. (b) Ramsey sequence showing initial prepa-
ration in state jgi (pseudospins pointing down to the south pole of
the Bloch sphere), the rotation to the equator by illuminating the
atoms with a coherent near-resonant π=2 laser pulse, precession
around the equator, and second π=2 x-axis rotation, after which
the z-axis projection carries information about the cosine of the
accumulated phase.

PRL 114, 103601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 MARCH 2015

0031-9007=15=114(10)=103601(5) 103601-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.114.103601
http://dx.doi.org/10.1103/PhysRevLett.114.103601
http://dx.doi.org/10.1103/PhysRevLett.114.103601
http://dx.doi.org/10.1103/PhysRevLett.114.103601


mode of an optical cavity during the interrogation time of
the RS sequence [see Fig. 1(a)]. Because of the cavity
damping, it is necessary to continuously replenish the
energy by incoherently repumping the atoms. One may
have thought that this would simply give rise to additional
decoherence channels, on top of the usual T1 and T2

processes, and cause the RS fringe visibility to decay more
rapidly. This is not the case, since the cavity-mediated
dissipative coupling between atoms acts to synchronize
their phases. We show that the coherence time of the
synchronized ensemble does not depend on individual-
atom dephasing, as represented by T1 and T2. The
synchronized atoms instead undergo only a collective
quantum phase diffusion. However, the collective phase
can be continuously monitored by observing the cavity
output field. Consequently, this system provides a kind of
conditional RS, conditioned on the cavity output, where
fringes of high visibility may be observed indefinitely.
The atom-cavity system during the interrogation time is

described by the Hamiltonian

Ĥ ¼ ℏΔν
2

XN
j¼1

σ̂zj þ
ℏg
2

XN
j¼1

ðâ†σ̂−j þ âσ̂þj Þ; ð1Þ

where Δν is the frequency difference between the atoms
and local oscillator and g is the coupling strength between
a single atom and the cavity mode. We introduce the
bosonic annihilation and creation operators, â and â†, for
cavity photons, and the jth atom Pauli operators, σ̂zj and
σ̂−j ¼ ðσ̂þj Þ†, for the pseudospins representing the two-level
system. For simplicity, g is assumed to be identical for all
atoms. In principle, this could be achieved by trapping the
atoms at the antinodes of the cavity mode by an optical
lattice. A less ideal spatial configuration only leads to a
reduced effective atom number, which has no impact on the
basic conclusions of this Letter [29].
In the presence of decoherence, the evolution is

described by the usual Born-Markov quantum master
equation for the reduced atom-cavity density matrix ρ,

dρ
dt

¼ 1

iℏ
½Ĥ; ρ� þ κL½â�ρ

þ
XN
j¼1

�
wL½σ̂þj � þ

1

T1

L½σ̂−j � þ
1

4T2

L½σ̂zj�
�
ρ ð2Þ

where L½Ô�ρ ¼ ð2ÔρÔ† − Ô†Ôρ − ρÔ†ÔÞ=2 denotes the
Lindblad superoperator. The cavity decays with rate κ and
the incoherent repumping is at rate w. Conventional RS
is recovered by setting g ¼ 0 and w ¼ 0, with the result that
the RS fringe visibility then decays exponentially with
the single-atom decoherence rate ΓS ¼ ðT−1

1 þ T−1
2 Þ=2

[see Fig. 2(a)].
We solve for the dynamics in an extreme regime of bad-

cavity quantum electrodynamics [31–35], where the cavity
decay rate is much greater than any time scale associated

with the atomic dynamics [36]. This allows an approxi-
mation to be made where the cavity field is entirely
eliminated from the equations of motion [37]. The role
of the cavity field then is to simply provide a source for a
dissipative collective coupling for the atoms. The effective
evolution is given by a quantummaster equation containing
only atoms;

dρ
dt

¼ −
i
2
Δν

XN
j¼1

½σ̂zj; ρ� þ ΓCL½Ĵ−�ρ

þ
XN
j¼1

�
wL½σ̂þj � þ

1

T1

L½σ̂−j � þ
1

4T2

L½σ̂zj�
�
ρ; ð3Þ

where Ĵ− ¼ P
N
j¼1 σ̂

−
j is the collective decay operator

and ΓC ¼ C=T1 is the collective decay rate, written in
terms of the cooperativity parameter of the cavity C [38].
The collective decay rate can be taken to be small, i.e.,
ΓC ≪ ΓS, because C is a dimensionless geometric cavity
parameter that for real systems is typically much less
than 1. For a current generation 87Sr optical clock experi-
ment [2], ΓS ∼ 1 s−1, while ΓC can be as small as 10−3 s−1

for C ≈ 0.16.
It is extremely difficult to find numerical solutions to

Eq. (3) for an appreciable number of atoms without further
approximation due to the exponential scaling, 4N , of the
dimensionality of the Liouvillian space. Fortunately, an
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FIG. 2 (color online). Calculations of Eq. (3) with N ¼ 250,
ΓC ¼ 0.2=T1, T2 ¼ T1, and w ¼ NΓC=2. (a) Ramsey fringes
with synchronized atoms (red solid line) versus T. Conventional
Ramsey fringes (blue dashed line) for the same T1 and T2.
(b) During the interrogation time, the atomic inversion hσ̂zji
(blue dashed line), spin-spin correlation hσ̂þj σ̂−k i (red solid line),
hσ̂þj σ̂−k i-hσ̂þj ihσ̂−k i (red dotdashed line), and hσ̂þj σ̂zki=ðhσ̂þj ihσ̂zkiÞ
(green dotted line).
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underlying SUð4Þ symmetry of the Liouvillian super-
operators in Eq. (3) was developed recently, which reduces
the complexity of the problem to N3 [39]. This enables
us to obtain numerical solutions up to a few hundred
pseudospins.
Figure 2(a) shows numerical calculations of RS fringes

with synchronized atoms. The solution of the quantum
master equation represents the ensemble average of many
experimental trials. A remarkable feature is that the fringe
visibility decays much slower than that of conventional
RS under the same T1 and T2 decoherences, demonstrating
the robustness to individual-atom decoherence. When
compared to conventional RS with independent atoms,
the principal difference here is that strong spin-spin
correlations between atoms hσ̂þj σ̂−k i (j ≠ k) develop due
to the dissipative coupling, as shown in Fig. 2(b). This
feature is a characteristic of phase locking [32,40]. After a
brief initial transient evolution, the fringe fits well to an
exponentially decaying sine function, i.e., Ae−λt sinΔνt,
where λ is the decay rate of the fringe visibility and A is an
amplitude (we derive this behavior later.)
Intuitively, one may expect that in order to effectively

phase lock the atoms, it should be necessary for the
dissipative coupling that provides rephasing to dominate
over the “random walk” due to quantum noises that destroy
phase correlations. Because of the all-to-all nature of the
interaction of atoms through the cavity mode, the dissipa-
tive coupling strength scales with N and is given by NΓC=2
[41]. We show the effect of this in the inset of Fig. 3. For
small atom number, the individual quantum noises domi-
nate over the rephasing, and the fringe envelope decays
more rapidly than in conventional RS, i.e., λ > ΓS. As N
increases, the dissipative coupling increases, and we reach
the regime λ < ΓS. For a large atom number, we find λ
approaches ΓC. The ΓC limit arises from quantum fluctua-
tions associated with the collective pseudospin decay
through the cavity.
There are three time scales one should consider. At short

times, quantum correlations develop as the atoms phase

lock. This can be seen in the initial transient part of the
evolution of the observables shown in Fig. 2(b), and is
characterized by the time scale w−1. This phase-locking
time should be less than the atomic coherence time Γ−1

S
in order to observe high-visibility fringes. There is also a
long time scale provided by the collective decay time Γ−1

C .
It is important to operate in the parameter regime in
which w ≫ ΓS ≫ ΓC.
A valid question to consider is: Why does the large

incoherent repumping rate w not destroy the synchroniza-
tion? Somewhat paradoxically, repumping is crucial for
building up phase correlations among atoms. In Fig. 3, we
show the effect of w on the decay rates of the Ramsey fringe
visibility λ. When the repumping rate is too small or too
large we find λ > ΓS, so that the system performs worse
than conventional RS. This can be understood since an
effective synchronization model for Eq. (3) can be derived
under the mean field approximation [29]. By parameteriz-
ing hσ̂þj i as αje−iϕj for each atom j, we obtain the equation
of motion for the phases ϕj,

dϕj

dt
¼ −Δνþ ΓC

2

hσ̂zji
αj

X
m

αm sinðϕm − ϕjÞ: ð4Þ

This has the form of a Kuramoto model [42,43] that
describes the synchronization of phase oscillators. The
model shows that population inversion of the pseudospins
is a necessary condition for phase synchronization. The
repumping strength must be large enough that there is more
probability for the atoms to be in the excited state than in the
ground state. However, if the repumping rate is too large,
the associated quantumnoise destroys the phase correlations
before they can develop. As has also been seen in the case
of the superradiant laser [32,34], the most coherent system
is realized at an intermediate pump strength.
An accurate semiclassical approximation may be devel-

oped that is valid in the case of large numbers of atoms.
Taking advantage of the fact that all expectation values
are symmetric with respect to atom exchange, we find
from Eq. (3),

d
dt

hσ̂þj i ¼ iΔνhσ̂þj i −
Γt

2
hσ̂þj i þ

ΓC

2
ðN − 1Þhσ̂þj σ̂zki; ð5Þ

where j ≠ k and Γt ¼ 2ΓS þ wþ ΓC is the total decay rate
of the atomic coherence. We first point out that instead of
calculating the population difference measured at the end of
the RS sequence, it is equivalent to calculate 2Im½hσ̂þj i� just
before the second π=2 pulse. The decay rate of hσ̂þj i during
the interrogation time T is therefore the same as that of the
Ramsey fringe visibility. As seen in Fig. 2(b), the quantities
αðtÞ ¼ hσ̂þj σ̂zki=ðhσ̂þj ihσ̂zkiÞ and hσ̂zjðtÞi rapidly approach
the steady state on the short time scale of the phase locking,
w−1. We therefore substitute the steady-state values αss
and hσ̂zjiss into Eq. (5). This produces the exponentially
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FIG. 3 (color online). The decay rate of the visibility of Ramsey
fringes at ΓC ¼ 0.2=T1 and T2 ¼ T1 as a function of repumping
for N ¼ 200 and as a function of N for w ¼ NΓC=2 (Inset). The
dots are numerical solutions of Eq. (3), and the solid blue line is
the semiclassical approximation for comparison.
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decaying sine function solution noted earlier with decay
constant

λ ¼ 1

2
½Γt − ðN − 1ÞΓCαsshσ̂zjiss�: ð6Þ

Furthermore αss ≈ 1, see Fig. 2(b). At the level of the mean
field [29], hσ̂zjiss ≈ Γt=ðN − 1ÞΓc giving the trivial result
λ ¼ 0. It is therefore necessary to develop a semiclassical
expression for hσ̂zjiss that goes beyond the mean field, as
shown in Ref. [29]. Figure 3 compares λ from the semi-
classical expression with the quantum master equation
solution, showing good agreement over the full range of
pumping rates.
All of these results consider the ensemble that is formed

from a statistical average of independent trials. The decay
of the fringe visibility is really due to the averaging itself, as
we will now see. In each trial, the quantum phase diffuses
as a function of interrogation time. This means that as time
goes on, different trials begin to add out of phase, and so the
fringe visibility decays.
This motivates us to consider the properties of a single

experimental run, where the behavior is qualitatively
different. Although in a single run, the fringe undergoes
a quantum phase diffusion, it does so with nondecaying
visibility. This quantum phase diffusion has a simple
physical interpretation in terms of quantum measurements.
Since the cavity field follows the atomic coherence through
adiabatic elimination, measuring the phase of the cavity
output field, for example by homodyne measurement, is
equivalent to a continuous nondestructive measurement on
which information is gathered about the evolving collective
atomic phase. The backaction of this measurement intro-
duces fluctuations that cause the collective atomic phase to
undergo a random walk [35].
We demonstrate this in Fig. 4(a), where we show a

typical Ramsey fringe for a single experimental trial by
using the method of quantum state diffusion [44,45] to
yield conditional evolution of the system subject to
continuous measurements of the cavity field. The phase
diffusion of the synchronized atoms is evident from the
phase fluctuation of the Ramsey fringe. To find the phase
diffusion coefficient, Fig. 4(b) shows the statistics of the
positions of the zero crossings of the fringe for 4000 trials.
They fit well to Gaussian distributions with variance given
by TΓC, clearly demonstrating that it is a diffusion process
and that the diffusion coefficient is

ffiffiffiffiffiffi
ΓC

p
. Note that this is

the same mechanism that also sets the quantum limited
linewidth in a superradiant laser to be ΓC [32], observed
here in the time rather than frequency domain.
We should emphasize that the quantum phase diffusion

does not itself provide a fundamental limit to the perfor-
mance of conditional RS, since the collective atomic phase
can be tracked by measuring the light output from the
cavity. This opens up the exciting possibility of observing
conditional Ramsey fringes (meaning an experimental trial

conditioned on the measurement record of the output field)
of near maximum fringe visibility for as long as the atoms
can be stored, even in the presence of T1 and T2 processes.
Of course a practical limit is also set by the length of time
for which the local oscillator can remain phase coherent.
In principle, if experimentally achieved, this work could
lead to dramatic advances in the sensitivity of RS, since the
entire measurement interval could then be used to deter-
mine frequency at the Fourier limit.
In conclusion, we have proposed and analyzed RS with

synchronized atoms where we have shown that the inter-
rogation time can be extended beyond the T1 and T2 times
that limit conventional RS. Because of the rephasing effect,
we have demonstrated that synchronized atoms are poten-
tially robust against local decoherence. However, we have
also found that the synchronization process itself intrinsi-
cally generates quantum phase diffusion through the
quantum fluctuations that arise due to the cavity dissipa-
tion. This implies that the quantum phase of the atomic
ensemble relative to the local oscillator must be tracked in
real time by observation of the output light from the cavity
in order to achieve the optimal precision for the RS with
synchronized atoms.
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D. Meiser, B. Zhu, D. A. Tieri, C. Genes, J. G. Restrepo,
A. M. Rey, J. K. Thompson, and J. Ye. This work has been
supported by the DARPA QuASAR program and the NSF
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FIG. 4 (color online). Quantum state diffusion calculations
of conditional Ramsey fringes subject to continuous homodyne
measurement of the cavity output field for N ¼ 10 and
w ¼ NΓC=2. The blue dashed lines are the ensemble average
for reference. (a) A typical Ramsey fringe for a single exper-
imental trial (red solid line). (b) Histograms are the statistics of
the positions of zero crossings of each fringe for 4000 trials. The
blue solid lines are fitted Gaussian distributions with variance of
TΓC centered on the zero crossing of the ensemble average.
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