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In a system of ultracold atoms near a Feshbach resonance, pairs of atoms can be associated into universal
dimers by an oscillating magnetic field with a frequency near that determined by the dimer binding energy.
We present a simple expression for the transition rate that takes into account many-body effects through a
transition matrix element of the contact. In a thermal gas, the width of the peak in the transition rate as a
function of the frequency is determined by the temperature. In a dilute Bose-Einstein condensate of atoms,
the width is determined by the inelastic scattering rates of a dimer with zero-energy atoms. Near an atom-
dimer resonance, there is a dramatic increase in the width from inelastic atom-dimer scattering and from
atom-atom-dimer recombination. The recombination contribution provides a signature for universal
tetramers that are Efimov states consisting of two atoms and a dimer.
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Introduction.—The field of ultracold atoms has extended
the frontiers of few-body and many-body physics by
providing pristine systems in which the interactions
between the constituents are simple and have strengths
that can be controlled experimentally. The frontiers of few-
body physics include the study of universal molecules,
which have properties determined by the large scattering
length a of the atoms, and universal reaction rates, whose
dependence on a and on kinematic variables is consistent
with asymptotic scale invariance or discrete scale invari-
ance [1]. The need for accurate calculations of universal
properties has pushed the computational frontiers to the
4-body problem and beyond. In many-body physics, the
frontiers include the study of superfluidity and other novel
phases of matter [2]. Accurate measurements of the proper-
ties of systems of ultracold atoms present a challenge to
many-body calculational methods because of the strong
correlations produced by a large scattering length.
Particularly challenging is the unitary limit in which a is
infinitely large and the interactions between the constitu-
ents are the strongest allowed by quantum mechanics.
Few-body physics provides powerful constraints on

many-body physics through universal relations pioneered
by Tan [3–5]. Many of these relations involve the contact,
an extensive thermodynamic variable that is conjugate to
1=a and provides a measure of the probability for pairs of
particles to be very close together. The contact controls the
thermodynamics of a many-body system and also deter-
mines the high-momentum and high-frequency tails of
correlation functions [6].
One way to produce universal molecules in a system of

ultracold atoms is magnetoassociation—the modulation of
the magnetic field near a Feshbach resonance with a
frequency near that determined by the binding energy of
the molecule. This method was first used by Thompson,
Hodby, and Wieman to produce shallow dimers composed

of 85Rb atoms [7]. It has since been used to produce dimers
with various other atoms as constituents and to measure
their binding energies [8–14]. Magnetoassociation has also
been used to associate 7Li atoms into Efimov trimers [15].
In this Letter, we derive the magnetoassociation rate for

universal molecules in a many-body system of ultracold
atoms. Many-body effects are taken into account through a
transition matrix element of the contact operator. We
deduce simple expressions for the transition rate for
producing universal dimers in a thermal gas of bosons
or fermions and in a Bose-Einstein condensate (BEC) as a
function of frequency. The dramatic increase in the width of
the peak in the transition rate near an atom-dimer resonance
provides a signature for new universal tetramers that are
Efimov states consisting of two atoms and a dimer.
Transition rate.—We consider a system of ultracold

atoms in a magnetic field that has a constant value B̄ for
t < 0 and oscillates with a small amplitude b for t > 0:
BðtÞ ¼ B̄þ b sinðωtÞ. Near a Feshbach resonance, the
scattering length is a function of the magnetic field:
aðBÞ ¼ abg½1 − Δ=ðB − B0Þ�, where abg is the background
scattering length, and B0 and B0 þ Δ are the positions of
the pole and the zero of the scattering length, respectively.
The inverse scattering length can be expanded in powers
of b:

1

aðtÞ ¼
1

ā
−

Δb
abgðB̄ − B0 − ΔÞ2 sinðωtÞ þ � � � ; ð1Þ

where ā ¼ aðB̄Þ. The deviation of 1=aðtÞ from 1=ā can be
treated as a periodic time-dependent perturbation. By Tan’s
adiabatic relation, a small change in 1=a produces a change
in the energy that is proportional to the contact C [4]. Thus
the perturbing Hamiltonian is proportional to the contact.
In the case of identical bosons with mass m, it can be
expressed as
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HpertðtÞ ¼ −
ℏ2

8πm

�
1

aðtÞ −
1

ā

�
C: ð2Þ

(In the case of fermions with two spin states, the prefactor
should be multiplied by 2.) The leading term of order b in
HpertðtÞ drives transitions to states with energies that are
higher or lower by ℏω. Higher order terms drive transitions
to states whose energies differ by larger integer multiples of
ℏω. If ā is large and positive and if ℏω is near the binding
energy ℏ2=mā2 of the shallow dimer, the first-order
perturbation can associate pairs of atoms into dimers.
The transition rate ΓðωÞ of the initial state jii into final

states jfi at leading order in b is given by Fermi’s golden
rule:

ΓðωÞ ¼ ℏ3Δ2b2

256π2m2a2bgðB̄ − B0 − ΔÞ4
X
f

jhfjCjiij2

×
X
�

ℏΓf

jEi � ℏω − Ef þ iℏΓf=2j2
; ð3Þ

where Ei and Ef are the energies of the initial state and the
final states, respectively. (In the case of fermions with two
spin states, the prefactor should be multiplied by 4.)
The Lorentzian factor allows for the possibility that the
final state involves the excitation of a resonance with
lifetime 1=Γf. In the limit Γf → 0, this factor reduces
to 2πδðEi � ℏω − EfÞ.
The association of molecules in a time-dependent

magnetic field has been considered previously by Hanna,
Köhler, and Burnett [16]. They calculated the probability
for producing a dimer as a function of time by solving the
time-dependent Schrödinger equation for two atoms in a
two-channel model with a closed channel. A major dis-
advantage of this approach is that it is difficult to account
for many-body effects, which are taken into account in
Eq. (2) through the transition matrix element of C.
It is convenient to express the contact operator in Eq. (2)

as the integral of the contact density operator:
C ¼ R

d3rCðrÞ. The field theoretic definition of the contact
[17] reveals that the contact density operator can be
expressed as C ¼ ϕ†ϕ, where the contact field ϕðrÞ is a
local operator that annihilates two atoms at a point. The
transition matrix element can be expressed as

hfjCjii ¼
Z

d3rhfjϕ†ðrÞϕðrÞjii: ð4Þ

A complete set of states
P

njnihnj ¼ 1 can be inserted
between ϕ† and ϕ. If only one term in the sum is nonzero,
the matrix element factors into a matrix element of ϕ that
involves the initial state and a matrix element of ϕ† that
involves the final state.
For a many-body system whose number density nðRÞ

varies slowly with the position R, the transition rate can be

simplified by using the local density approximation. The
matrix element of C can be expressed in terms of the
matrix element for the homogeneous system whose initial
state jii has a constant number density equal to nðRÞ. By
exploiting the translational invariance of the homogeneous
system, the modulus squared of the matrix element
summed over final states can be reduced to

X
f

jhfjCjiij2 ¼
X
f

ð2πℏÞ3δ3ðPi − PfÞ

×
Z

d3Rjhfjϕ†ðRÞϕðRÞjiij2; ð5Þ

where Pi and Pf are the total momenta of the initial and
final states of the homogeneous system, respectively.
In a system of ultracold trapped bosonic atoms, a low-

momentum dimer produced by magnetoassociation will
eventually suffer an inelastic collision, producing energetic
particles that escape from the trapping potential. An
inelastic collision with a single atom results in the loss
of 3 atoms. An inelastic collision with two atoms results in
the loss of 4 atoms. The transition rate can be determined
from measurements of the loss of trapped atoms. For
fermionic atoms, a different method would be required
to measure the transition rate.
Thermal gas.—We first consider a dilute thermal gas of

atoms, whose momentum distribution can be approximated
by a Boltzmann distribution with temperature T and local
number density n. If the gas consists of a large numberN of
bosonic atoms, any of theN2=2 pairs of atoms can make the
transition to the dimer. The transition matrix element
reduces to the matrix element of ϕ†ϕ between the dimer
state hDj and the state jAAi for the pair of atoms that makes
the transition. Upon inserting the projector j0ih0j onto the
vacuum state between ϕ† and ϕ, the square of the matrix
element can be expressed as the product of the contact for a
dimer, which is equal to 16π=ā, the contact for a pair of
atoms with relative wave number k, which can be deduced
from the contact for a pair of atoms in thermal equilibrium
derived in Ref. [18], and factors of the volume V associated
with the normalization of plane-wave states [19]:

jhDjϕ†ϕjAAij2 ¼ 1024π3ā
ð1þ ā2k2ÞV2

: ð6Þ

After multiplying by the number N2=2 of pairs, the factor
of N2=V2 can be replaced by n2ðRÞ. The Lorentzian
function in Eq. (3) reduces to a delta function. The
transition rate is zero if ℏω < ℏ2=mā2. For larger ω, the
transition rate is
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ΓðωÞ ¼
ffiffiffi
2

p
ℏΔ2b2ā

ma2bgðB̄ − B0 − ΔÞ4
�Z

d3Rn2ðRÞ
�

×
λ3TkðωÞ

1þ ā2k2ðωÞ exp (− λ2Tk
2ðωÞ=2π); ð7Þ

where kðωÞ¼ðmω=ℏ−1=ā2Þ1=2 and λT ¼ð2πℏ2=mkTÞ1=2.
(The transition rate for fermions is obtained by replacing n2

by 2n1n2, where ni is the number density for spin state i.)
The loss of atoms from magnetoassociation into dimers

has been studied by Dyke et al. using a thermal gas of 7Li
atoms at a magnetic field B̄ ¼ 734.5 G, where the scatter-
ing length is ā ¼ 1100a0 [14]. They reported the fraction of
atoms remaining after an unspecified time as a function of
the frequency for three combinations of the modulation
amplitude and the temperature. In Fig. 1, the predicted
transition rates ΓðωÞ for these three conditions are shown as
functions of the frequency ν ¼ ω=2π.
Bose-Einstein condensate.—We next consider a dilute

BEC of atoms at zero temperature with local number
density n. The contact field ϕ can be expressed as the
sum of its expectation value ϕ̄ and a quantum fluctuation
field ~ϕ: ϕðrÞ ¼ ϕ̄þ ~ϕðrÞ. The field ~ϕ† has a nonzero
amplitude to create a dimer in the BEC. The leading
contribution to the matrix element of ϕ†ϕ between
the state hiþDj in which a dimer has been excited and
the BEC jii comes from the ~ϕ†ϕ̄ term. The product
of ϕ̄ and its complex conjugate is the contact density of
the BEC, which in the dilute limit is ϕ̄�ϕ̄ ¼ 16π2ā2n2.
The square of hiþDj ~ϕ†jii is the contact of the dimer,
which in the dilute limit is simply 16π=ā. The most
dramatic dependence on the frequency comes from the
Lorentzian in Eq. (3). The dimer in the BEC behaves like a
resonance whose complex energy ED − iℏΓD=2 is the

sum of the binding energy −ℏ2=mā2 and the mean-field
energy from coherent forward scattering of the dimer
from atoms in the condensate. The transition rate to dimers
in the BEC is

ΓðωÞ ¼ πℏ3Δ2b2ā
m2a2bgðB̄ − B0 − ΔÞ4

×
Z

d3Rn2ðRÞ ℏΓD

ðED þ ℏωÞ2 þ ℏ2Γ2
D=4

: ð8Þ

The spatial integral is a density-weighted average of a
Lorentzian with a density-dependent width ΓD.
The complex energy of a dimer in the BEC is given by

ED ¼ −
ℏ2

ma2
þ 3πℏ2

m
ðRe aADÞnþ � � � ; ð9aÞ

ΓD ¼ βADnþ 1

2
αAADn2 þ � � � : ð9bÞ

The leading mean-field correction to ED comes from the
atom-dimer (AD) scattering length aAD. By the optical
theorem, ΓD is determined by the inelastic scattering rate of
the dimer. If there are deep dimers, the leading contribution
to ΓD comes from AD scattering into an atom and a deep
dimer, whose rate coefficient is βAD ¼ 6πℏð−ImaADÞ=m.
The universal results for aAD and βAD are given in Ref. [1]
as functions of a� and η�, where a� expð−iη�=s0Þ is the
complex scattering length where aAD diverges. In the
absence of deep dimers, the leading contributions to ΓD
come from atom-atom-dimer (AAD) recombination into
two shallow dimers or into an Efimov trimer and an atom.
We define αAAD so that the event rate per volume in a dilute
thermal gas with atom and dimer number densities n and
nD is αAADn2nD.
Atom-atom-dimer recombination.—The universal result

for the AAD recombination rate at threshold has been

FIG. 1 (color online). Transition rate Γ for producing dimers in
a thermal gas of 4 × 105 7Li atoms in the experiment of Ref. [14]
as a function of the frequency ν. The curves are the transition rate
in Eq. (7) for three combinations of the modulation amplitude b
and the temperature T: ðb; TÞ ¼ ð0.57 G; 10 μKÞ (dotted, green
line), ð0.14 G; 3 μKÞ (dashed, blue line), ð0.57 G; 3 μKÞ (solid,
red line).

FIG. 2 (color online). Interaction width ΓD of a dimer in a BEC
of 7Li atoms with number density n ¼ 2.85=μm3 as a function of
the scattering length a. The curves are the contributions to ΓD
from inelastic atom-dimer collisions (dashed, red line) and from
atom-atom-dimer recombination (dotted, blue line) and their sum
(black, solid line).
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calculated numerically by Deltuva [20]. The rate constant
αAAD can be expressed as ℏa4=m multiplied by a log-
periodic function of a with discrete scaling factor
eπ=s0 ≈ 22.7, where s0 ≈ 1.00624. The log-periodic func-
tion has a minimum value of 118 at a ¼ 5.5a�. It increases
dramatically as a approaches a� as a consequence of the
Efimov effect in the AAD system. The associated Efimov
states are universal tetramers whose existence was first
pointed out by Braaten and Hammer [1]. Their binding
energies and widths in the zero-range limit have been
calculated by Deltuva [21]. The constituents of the AAD
system have a mass ratio of 2 and the most resonant
interaction is between an atom and a dimer. The associated
discrete scaling factor for aAD is eπ=s2 ≈ 2 × 105, where
s2 ≈ 0.257206. The universal 3-body recombination rates
for systems with two identical particles that have resonant
interactions with a third particle have been calculated
analytically by Helfrich, Hammer, and Petrov for the
arbitrary mass ratio [22]. In the region where jaADj ≫ a,
Deltuva’s numerical results can be reproduced by the
analytic results of Ref. [22]. Up to corrections suppressed
by a=aAD, αAAD reduces to ðkAT þ kDDÞℏa4AD=m, where
kAT þ kDD is a log-periodic function of aAD with discrete
scaling factor eπ=s2. For a approaching a� from above, the
separate contributions from final states consisting of
shallow trimer plus atom or two dimers are

kAT ¼ 2k2ðsin2½s2 logðaAD=a2þÞ� þ sinh2η2�Þ
sinh2ðπs2 þ η2�Þ þ cos2½s2 lnðaAD=a2þÞ�

; ð10aÞ

kDD ¼ (k2= tanhðπs2Þ) sinhð2η2�Þ
sinh2ðπs2 þ η2�Þ þ cos2½s2 lnðaAD=a2þÞ�

: ð10bÞ

The atom-trimer contribution has interference minima
when aAD is equal to ðeπ=s2Þna2þ, where n is an integer.
For a approaching a� from below, the combined contri-
bution from final states consisting of two dimers or deeper
trimer plus atom are

kDD þ kAT ¼ (k2= tanhðπs2Þ) sinhð2η2�Þ
sin2½s2 lnðaAD=a2−Þ� þ sinh2η2�

: ð11Þ

There are resonance peaks when aAD is equal to
ðeπ=s2Þna2−, where n is an integer, from Efimov states
passing through the AAD threshold. The coefficient k2 ¼
36.3367 and the ratio ja2−j=a2þ ¼ eπ=2s2 ≈ 449.053 are
universal constants. Efimov states disappear through the
atom-trimer threshold when aAD is equal to ðeπ=s2Þna2�,
where n is an integer. The universal ratio a2�=ja2−j ≈ 0.90
can be determined by interpolating between numerical
results given in Ref. [22]. The value of a2� was determined
by Deltuva in Ref. [21]: a2� ≈ 8.830a�. The value of η2�
can be determined by fitting Deltuva’s results in Ref. [20]:
η2� ≈ 0.01. If there are deep dimers, they provide additional
recombination channels. Their effects can be taken into

account by making the substitution a� → a�e−iη�=s0 in the
amplitudes that give the rate constants in Eqs. (10) and (11).
If η� is much larger than η2�, the resulting rates are
insensitive to η2� [19].
Dimer width in the BEC.—In a dilute BEC of trapped

atoms, the transition rate for producing dimers given by
Eq. (8) has a peak for ω near ℏ=ma2. For a generic
scattering length, the effect of the AD scattering term in
Eq. (9a) is to shift the peak by a fractional amount of order
na3, which is small if the BEC is dilute. Near an AD
resonance a�, the fractional shift increases to order
na2jaADj. However the fractional shift from AAD scatter-
ing is of order n2a2jaADj4, which can be larger if njaADj3 is
much larger than 1.
The width ΓD of the peak in the transition rate is given by

Eq. (9b). For a generic scattering length, the contributions
to ΓD from inelastic AD scattering and from AAD
recombination are suppressed relative to ℏ2=ma2 by factors
of order η�na3 and n2a6, respectively. Near an AD
resonance a�, these factors increase to order η�najaADj2
and n2a2jaADj4, respectively. When najaADj2 is much
larger than η�, the AAD contribution to ΓD can be larger
than the AD contribution.
In Ref. [14], Dyke et al. also studied the loss of atoms

from magnetoassociation in a BEC of about 4 × 105 7Li
atoms at a magnetic field B̄ ¼ 734.5 G with modulation
amplitude b ¼ 0.14 G. The local number density can be
approximated by a Thomas-Fermi density profile with
central number density n ¼ 2.85=μm3. In Fig. 2, the dimer
width ΓD for a� ¼ 317a0 and η� ¼ 0.075 is shown as a
function of a. The AD contribution is a Lorentzian centered
at a�. The AAD contribution is discontinuous at a�,
because there is an additional contribution for a > a� from
recombination into an atom and the Efimov trimer that
disappears through the atom-dimer threshold at a�. The
AAD contribution is smaller than the AD contribution for
a < a�, but it is larger in the range a� < a < 1.05a�. If n is
changed by a factor of x, the AD and AAD contributions
change by factors of x and x2, respectively. The AD and
AAD contributions are sensitive to η�, scaling like 1=η� and
1=η4�, respectively.
Summary.—We have derived a simple expression for the

magnetoassociation rate of universal molecules that takes
into account many-body effects through the transition
matrix element of the contact. We have applied it to the
magnetoassociation of atoms into dimers in a thermal gas
and in a BEC. The width of the dimer peak in a BEC is
dramatically enhanced near an atom-dimer resonance. The
contribution to the width from atom-atom-dimer recombi-
nation provides a signature for universal tetramers that are
Efimov states consisting of two atoms and a dimer. There
are many other applications of the transition rate in an
oscillating magnetic field, including the magnetoassocia-
tion of atoms into Efimov trimers [15], the magneto-
excitation of collective modes in a Bose-Einstein
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condensate [23], and the magnetodissociation of paired
fermions in a superfluid [24]. Thus the transition rate in an
oscillating magnetic field provides a new window into the
constraints on many-body physics provided by few-body
physics.
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