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Recently, we proposed a mechanism for sequestering the standard model vacuum energy that predicts
that the Universe will collapse. Here we present a simple mechanism for bringing about this collapse,
employing a scalar field whose potential is linear and becomes negative, providing the negative energy
density required to end the expansion. The slope of the potential is chosen to allow for the expansion to last
until the current Hubble time, about 1010 years, to accommodate our Universe. Crucially, this choice is
technically natural due to a shift symmetry. Moreover, vacuum energy sequestering selects radiatively
stable initial conditions for the collapse, which guarantee that immediately before the turnaround the
Universe is dominated by the linear potential which drives an epoch of accelerated expansion for at least an
e fold. Thus, a single, technically natural choice for the slope ensures that the collapse is imminent and is
preceded by the current stage of cosmic acceleration, giving a new answer to the “why now?” problem.
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In Refs. [1,2] we proposed a mechanism for sequestering
the matter sector vacuum energy from gravity. The idea is
that all of the matter sector scales are functions of the
4-volume element of the Universe

R
d4x

ffiffiffi
g

p
. Picking

the specific functional dependence on
R
d4x

ffiffiffi
g

p
, reflecting

the scaling of dimensional quantities, ensures that the
vacuum energy contributions are invisible to gravity at
any and all orders of the loop expansion in the matter sector.
While this “cancellation" of the vacuum energy does not
directly protect from graviton loops, it is radiatively stable
to matter corrections, evading the Weinberg no-go theorem
[3] (see also Ref. [4]). As a bonus, the mechanism renders
the contributions from phase transitions automatically
small at late times. Since our mechanism is locally
Poincaré invariant and diffeomorphism invariant, it does
not introduce any new local degrees of freedom, represent-
ing a minimal modification of general relativity by adding
two global constraints.
For the matter sector scales to be nonzero, the Universe

should be finite in spacetime, collapsing in the future. This
requires dynamics that can turn expansion into contraction
in a Friedmann-Robertson-Walker (FRW) geometry. A
simple possibility is to have a field with a potential that is
not bounded frombelow, or at least is “sufficiently negative”
(see, e.g., Refs. [5,6] for earlier considerations). If the
negative potentials compensate the positive energy density
of the rest, the collapse will occur, and the field theory will
not be scale invariant but will have a nonzero mass gap.
Having a negative potential that can destabilize the Universe
seems to be physically feasible. After all, the standardmodel
Higgs appears to be an example of a field with such a
potential [7], albeit with a very delayed instability [8].
After vacuum energy cancellation there remains a

residual, radiatively stable cosmological constant whose

value must be smaller than the value of the turnaround
potential if collapse is to occur. By taking the turnaround
potential to be a linear function, it too is radiatively stable.
This is because a linear potential is exactly shift symmetric
in our framework, sufficing not only to protect its form but
also the numerical value of its slope. Once set, to leading
order this potential remains the same to all orders in the
loop expansion in the matter sector. This is crucial since it
allows us to make a technically natural choice of the slope,
m3

slope ≃MPlH2
0 ≃ 10−39 ðeVÞ3, that ensures that collapse

will occur after a present Hubble epoch. Further, the
vacuum energy sequestering dynamically selects radia-
tively stable initial conditions that guarantee this turn-
around will be preceded by a period of accelerated
expansion at the observed scale of dark energy, lasting
for at least an e fold. This is a new solution to the “why
now?” problem [9]. (Although the linear potential has been
discussed before in General Relativity (GR) to address the
coincidence problem [10], there the radiative corrections to
Λ require fine-tunings, unlike in our proposal, as we will
discuss below.) It also confirms that wDE ≃ −1 is a
transient, as we claimed in Refs. [1,2], and may be
observable, along the lines of Ref. [6].
As defined in Refs. [1,2], we start with the theory

given by

S ¼
Z

d4x
ffiffiffi
g

p �
M2

P1

2
R − Λ − λ4Lðλ−2gμν;ΦÞ

�
þ σ

�
Λ

λ4μ4

�
;

ð1Þ

where all “protected” matter couples minimally to the
rescaled metric ~gμν ¼ λ2gμν, and as before, λ sets the
hierarchy between the matter scales and the Planck scale,
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since mphys=MPl ∝ λm=MPl, where mphys is the physical
mass scale and m is the bare mass in the Lagrangian. The
parameters Λ and λ are global Lagrange multipliers,
constants in space and time that should be varied over to
minimize the action, yielding global constraints

σ0

λ4μ4
¼

Z
d4x

ffiffiffi
g

p
; 4Λ

σ0

λ4μ4
¼

Z
d4x

ffiffiffi
g

p
Tμ

μ; ð2Þ

where Tμν ¼ ð2λ4= ffiffiffi
~g

p Þðδ=δ~gμνÞ R d4x
ffiffiffi
~g

p
Lð~gμν;ΦÞ is the

conserved stress energy in the “physical” frame, where
the matter sector is canonically normalized, and
σ0 ¼ ½dσðzÞ=dz� ≠ 0. Thus, the function σ fixes the matter
scales as functions of

R
d4x

ffiffiffi
g

p
. Phenomenological argu-

ments favor odd functions which are exponential for large
arguments in order to desensitize low energy particle
physics from dependence on cosmological initial
conditions, while the scale μ is a fixed external scale
determined by the same [1,2]. The full protected matter
Lagrangian

λ4Lðλ−2gμν;ΦÞ¼λ4L̂ðλ−2gμν;ΦÞþλ2

2
ð∂φÞ2þλ4VðφÞ ð3Þ

includes the standard model fields (along with possible
extensions) in L̂ and a scalar field φ, which is the collapse
“trigger” controlling the turnover of cosmic expansion.
The vacuum energy cancellation [11] to all orders in the
protected matter sector loop expansion follows from
diffeomorphism invariance of the theory, since the full
effective Lagrangian computed from

ffiffiffi
g

p
λ4Lðλ−2gμν;ΦÞ ¼ffiffiffi

~g
p

Lð~gμν;ΦÞ still couples to ~gμν [12].
Integrating out the global variables Λ and λ, the field

equations become [1,2]

M2
P1G

μ
ν ¼ Tμ

ν −
1

4
δμνhTα

αi: ð4Þ

where the historic average is denoted hQi ¼R
d4x

ffiffiffi
g

p
Q=

R
d4x

ffiffiffi
g

p
. If we take the effective matter

Lagrangian Leff calculated to any order in loops, and split
it into the renormalized vacuum energy (classical and
quantum) ~Vvac ¼ h0jLeff j0i and local excitations ΔLeff ,
we can write Tμ

ν ¼ −Vvacδ
μ
ν þ τμν , where Vvac ¼ λ4 ~Vvac and

τμν ¼ ð2= ffiffiffi
g

p Þðδ=δgμνÞ R d4x
ffiffiffi
g

p
λ4ΔLeffðλ−2gμν;ΦÞ. The

vacuum energy completely drops out of the field equations,
leaving us with

M2
P1G

μ
ν ¼ τμν −

1

4
δμνhτααi: ð5Þ

A residual cosmological constant Λeff ¼ 1
4
hτααi remains,

and corresponds to a radiatively stable renormalized
cosmological constant operator, after subtracting the

divergent part. It must be measured as in the case of
any divergent quantities in quantum field theory. Our
procedure amounts to enforcing the result of the measure-
ment by using the whole Universe as the detector [2]. It is
protected by approximate scaling and shift symmetries of
the theory that control the cancellation [1,2].
Because λ controls the physical scales in L, mphys ¼ λm,

it must be nonzero. By the first equation of Eq. (2),R
d4x

ffiffiffi
g

p
must also be finite [1,2]. For this to happen,

the cosmic expansion must be halted and contraction must
begin. This is the job for the collapse trigger φ in Eq. (3). Its
potential VðφÞmust be negative for at least some range of φ
to halt the expansion [6,13]. It cannot be constant: if so, it
would have been canceled along with the rest of the
vacuum energy in Eq. (1). An arbitrary potential would
be subject to radiative corrections, which change both its
form and the numerical values of its scales. Dealing with
this would restore some of the tunings of the vacuum
energy sector that we are striving to evade.
In the case of a linear potential, VðφÞ ¼ m3�φþ V0;

however, there is a powerful protection mechanism from
radiative corrections. It is the approximate scaling and shift
symmetries of Eq. (1) that ensure the cancellations of the
vacuum energy in the first place [1,2]. Indeed, the shift
φ → φþ C changes the full matter Lagrangian by
L → Lþm3�C. This can be absorbed by the shift of the
global variable Λ → Λ − λ4m3�C so that the bulk action in
Eq. (1) is invariant. The global term changes by
σ → σ þP∞

n¼1½ð−1Þn=n!�σðnÞjC¼0½ðm3�C=μ4Þn�, but this
has no effect on the scales in the bulk terms in perturbation
theory such asm�. The only effect arises from a variation of
λ induced by a change of the constraint equations (2),
renormalizing the physical scales by the λ variation.
Whenever ðm3�C=μ4Þ ≪ 1, these variations are small, as
generically occurs for small scales m� and large cutoffs
μ ∼MP1. Hence, not only is the linear form of VðφÞ
protected, but its physical slope m3

slope ¼ λ3m3� is perturba-
tively stable, too. We can choose it to be whatever we like
because its small values are technically natural. As we will
see, a solution to the “why now?” problem follows from the
choice m3

slope ≃MPlH2
0.

Let us now study the dynamics of the linear potential in
the sequestering framework. Note that now the residual
cosmological constant, Λeff ¼ 1

4
hτααi, is irrelevant by itself,

since it can be “gauged away” by a shift of φ. [By a shift of
φ, we can also remove V0 from all local equations; it will
appear in the constraints (2), but for asymptotically
exponential σ, its effects are negligible.] To see this
explicitly, we write τμν ¼ τ̂μν þ ∂μφ∂νφ − 1

2
δμνð∂φÞ2 −

δμνm3
slopeφ, where τ̂μν is the stress energy of all protected

matter sector fields other than φ, contained in L̂. It follows
that hτμμi ¼ hτ̂μμi − hð∂φÞ2i − 4m3

slopehφi, and so the right-
hand side of Eq. (5) is given by
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τμν −
1

4
δμνhτααi ¼ τ̂μν −

1

4
δμνhτ̂ααi þ ∂μφ∂νφ

−
1

4
δμν½2ð∂φÞ2 − hð∂φÞ2i�

− δμνm3
slopeðφ − hφiÞ: ð6Þ

This stress-energy tensor is manifestly invariant under
φ → φþ C. In contrast, the residual cosmological constant
is not invariant. It transforms as

hτμμi → hτμμi − 4m3
slopeC: ð7Þ

Shifting the origin of the φ direction, we can set hτααi to
any arbitrary value; and in particular, we can choose it to
vanish. (The scalar kinetic energy dominates near the big
crunch [14] and so hτμμi diverges logarithmically. So does
the curvature. Hence, one must terminate the geometry at
Planckian densities, which renders the contributions from
the singularity small in big universes [2].)
We now turn to cosmological mechanics and take the

spatially closed FRW geometry, ds2 ¼ −dt2 þ a2ðtÞdΩ3,
as the background geometry, describing a compact universe
that underwent a stage of rapid inflation [1,2]. As noted
above, we will take the φ gauge such that the potential is
m3

slopeφ, with the initial value of φ to be determined a
posterior to satisfy the gauge constraint hτααi ¼ 0 [1,2].
With H ¼ _a=a, the field equations (5) reduce to

3M2
P1

�
H2 þ 1

a2

�
¼ ρþ _φ2

2
þm3

slopeφ;

3M2
P1

�
_H −

1

a2

�
¼ −

3

2
ðρþ pÞ − 3

2
_φ2;

φ̈þ 3H _φþm3
slope ¼ 0: ð8Þ

The energy density ρ of the protected sector matter other
than φ obeys _ρþ 3Hðρþ pÞ ¼ 0, where p ≠ −ρ: it is not
vacuum energy, which completely cancels from the source.
The gauge constraint hτααi ¼ 0 yields

h _φ2i − 4m3
slopehφi þ h3p − ρi ¼ 0; ð9Þ

and will play a crucial role in what follows. As stressed
above, we have canonically normalized all modes, absorb-
ing λ into the dimensionful quantities in L.
Starting with Eq. (8) we first prove that the linear

potential forces an expanding universe to eventually col-
lapse. We do so by contradiction: suppose collapse does not
happen, then at late times the scale factor a must be strictly
positive. If it were also finite, we could have written it
asymptotically as a ¼ aend þ fð1=tÞ for some suitable [15]
function f obeying fð0Þ ¼ 0. Then,

H → −
gð1=tÞ
taend

; _H →
gð1=tÞ þ hð1=tÞ

t2aend
; ð10Þ

with gðxÞ ¼ xf0ðxÞ and hðxÞ ¼ xg0ðxÞ. So asymptotically
_H → 0, implying that _φ → const, and so φ̈ → 0. It also
follows that H → 0, which is in contradiction with the last
equation in Eq. (8) when mslope ≠ 0. If, on the other hand,
aend diverges, we again infer that H → 0, and by the
Friedmann equation in Eq. (8), also 1

2
_φ2 þm3

slopeφ → 0.

From the vanishing of _H, we again infer _φ → 0, and so we
must also have φ → 0. We now arrive at our final contra-
diction because the last equation of Eq. (8) implies
φ̈ → −m3

slope ≠ 0, which is impossible by analyticity when
φ; _φ → 0. Hence, the universe must collapse.
Can the collapse driven by a linear potential be delayed

for long enough to approximate our Universe? This
requires initial values of φin for which VðφinÞ > 0, and a
potential slope gradual enough such that the epoch of
VðϕÞ > 0 is sufficiently long. Since the slope is technically
natural, its chosen value will be stable. If we choose it to be
m3

slope ≃MPlH2
0, the ensuing universe will expand until a

time ∼H−1
0 and undergo a short stage of accelerated

expansion just before the collapse. In contrast to GR,
where other possibilities can be realized, the vacuum
energy sequestering dynamically predicts this outcome
via the gauge constraint (9), which picks the special,
radiatively stable initial conditions for the scalar field φ.
Now we prove this. For m3

slope small, unless the trigger
field φ is initially many orders of magnitude larger than
MP1, its energy density will be subleading to other matter
sources. Ignoring its contributions to the gravitational
equations in Eq. (8), in an expanding power-law FRW
background (a ∼ tp for p > 0), at large wavelengths the
field equations give _φ ¼ ðφ1=t3pÞ − ðm3

slopet=3pþ 1Þ and

φ ¼ φ0 þ ½ðφ1=ð1 − 3pÞt3p−1Þ� − ½m3
slopet

2=2ð3pþ 1Þ�.
The attractor values of φ; _φ are

φ ¼ φ0 −
m3

slopet
2

2ð3pþ 1Þ ¼ φ0 −
m3

slope

2ð3pþ 1Þ
�
p
H

�
2

;

_φ ¼ −
m3

slopet

3pþ 1
¼ −

m3
slope

3pþ 1

p
H
: ð11Þ

So φ is speeding up towards more negative values. It will
inevitably begin to dominate the dynamics triggering
collapse. Suppose that it begins to dominate while φ > 0

at a scale H†, where φ†¼φ0− ½m3
slope=2ð3pþ1Þ�ðp=H†Þ2

and _φ† ¼ −½ðm3
slope=3pþ 1Þ�ðp=H†Þ. Until such time, its

total variation is

φ† − φin

MP1
¼

Z
t†

tin

dt
MPl

_φ≃ −Oð1Þm
3
slopeMP1

M2
P1H

2
†

: ð12Þ
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Since we chose m3
slope ≃MP1H2

0, where H0 ≲H†, the field
displacement is sub-Planckian during the whole past
history of the Universe up until φ domination,
φin − φ† < MP1.
Further, at the onset of φ domination, 3M2

P1H
2
† ≃

ρ†ðφÞ≡ _φ2
†
2
þm3

slopeφ†. Our choice of small m3
slope ≃

MP1H2
0 sets the ratio of kinetic to total energy of φ to

be ½ð1=2Þ _φ2
†=ρ†ðφÞ� ¼ Oð1Þðm6

slope=M
2
PlH

4
†Þ < 1. So the

energy density is dominated by its potential energy,
and m3

slopeφ† ≃ 3M2
P1H

2
†, or equivalently, φ† ≃

ðMP1H2
†=m

3
slopeÞMP1 > MP1. Similarly, the ratio of kinetic

and potential energy in φ is ½ð _φ2
†=2Þ=m3

slopeφ†�≃
Oð1Þðm6

slope=M
2
P1H

4
†Þ < 1, and since φ† > MP1, we con-

clude that the trigger field is automatically in slow roll once
it begins to dominate. Indeed, the slow roll parameters for
the linear potential are

ϵ ¼ _φ2
†

2m3
slopeφ†

< 1; η ¼ φ̈†
H† _φ†

≃ 1

2

M2
P1

φ2
†

< 1; ð13Þ

by our choice of mslope.
The evolution outlined above is generic provided

φin > MP1, thanks to the sub-Planckian field displacements
leading up to φ domination. The gradual change of the
linear potential guarantees that the collapse will be delayed
to very late times, t > H−1

0 , by the fact that the field φ is in
slow roll. What is more, before the collapse, the Universe
undergoes a stage of accelerated expansion. This essen-
tially lasts until the turnover, which occurs when
m3

slopeφ≃ − 1
2
_φ2. We can estimate the scale at which this

happens by using the slow roll description of φ evolution,

3M2
P1H

2 ¼ m3
slopeφ; −3H _φþm3

slope ¼ 0; ð14Þ

yielding 2
3
φ3=2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm3

slope=3Þ
q

MP1ðt− t†Þ þ 2
3
φ3=2
† . Slow

roll approximation breaks down when φ≲MP1, i.e., when

t − t† ≃Oð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MP1=m3

slope

q
. After that, the field quickly

runs to negative values to bring about the turnover. To a
good approximation, the turnover occurs at a time
tturnover ∼ 1=Hage, where

1

Hage
≃ 1

H†
þOð1Þ

ffiffiffiffiffiffiffiffiffiffiffi
MP1

m3
slope

s
≳ 1

H0

; ð15Þ

which gives the number of e folds of acceleration preceding
the collapse to be N ∼H†=H0. The total variation of φ
throughout the expanding phase can be estimated as an
extension of Eq. (12), which gives

φturnover − φin

MP1
≃ −Oð1Þm

3
slopeMP1

M2
P1H

2
age

≃ −Oð1ÞMP1
H2

0

H2
age

:

ð16Þ
Clearly, φin − φturnover ≳MP1, and so most of that variation
accumulated near the turnover.
In standard GR, the evolution we have just described

arises from a small subset of possible initial conditions.
There are many more reasonable initial conditions, and they
lead to very different cosmic eschatology. However, our
framework is far more restrictive than standard GR. In our
case the only permissible initial conditions are those that
guarantee the evolution along the lines described above.
Indeed, recall the constraint (9) that restricts the initial
conditions. Since the Universe is spatially compact, and
collapses, the right-hand side is dominated by the contri-
butions from near the turning point. By arguments
similar to those explained in Ref. [2], it follows that
h _φ2i−4m3

slopehφi≃ρturnoverðϕÞ≃−Oð1Þm3
slopeφturnover and

h3p − ρi≃ −Oð1ÞM2
P1H

2
age, so the constraint (9) gives

φturnover

MPl
≃ −Oð1ÞMP1H2

age

m3
slope

≃ −Oð1ÞH
2
age

H2
0

≲ −1: ð17Þ

This and Eq. (12) force the initial value of φ to be trans-
Planckian:

φin ≃
�
Oð1Þ H2

0

H2
age

þOð1ÞH
2
age

H2
0

�
MP1 ≳MP1: ð18Þ

This is precisely the initial condition that leads to cosmo-
logical collapse in the imminent future, preceded by a
period of slow roll and accelerated expansion. Other
initial values of φin that could have led to different cosmic
evolutions are excluded in our setup. They are dynamically
impossible. Thus, in our framework a collapsing universe,
with the collapse triggered by a field with a linear
potential, must undergo a stage of accelerated expansion
prior to collapse, and after the onset of scalar field
domination.
Let us summarize. Here we have presented a mechanism

to trigger cosmological collapse in the framework for
vacuum energy sequestering recently proposed in
Refs. [1,2]. It is a field theory with a linear potential,
whose form and slope are protected by a shift symmetry,
and so are technically natural. To delay the collapse, the
slope must be very gradual. Collapse cannot occur in at
least the first 109 years, and ensuring this amounts to
picking the slope such thatm3

slope ≲MP1H2
0 ≃ 10−39 eV. If,

thanks to technical naturalness, we saturate this bound, the
Universe is on the brink of collapse today.
Once this is arranged, a remarkable consequence is that

at some time prior to collapse the trigger field will dominate
the evolution and inevitably lead to a stage of accelerated
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expansion of the Universe. This gives a natural and
immediate realization of one of the first ever models of
quintessence [16] but without any direct fine-tunings just to
yield late acceleration alone. The scale of the accelerated
expansion is controlled by the slope of the potential alone,
because the global constraints (2) constrain the initial value
of the trigger field φin to be moderately trans-Planckian.
Moreover, the prediction is robust in the sense that the
initial condition is insensitive to radiative corrections. Thus,
the scale of accelerated expansion is automatically com-
parable to the scale controlling the age of the Universe, and
for our choice ofmslope, it is precisely now. This gives a new
solution of the “why now?” problem. In short, if we see
signs of cosmological collapse, we see acceleration.
Conversely, the present epoch of acceleration may be
evidence of impending doom. The duration of this accel-
erated expansion is not very long, lasting possibly only
Oð1Þ e folds. This is seen from the effective dark energy
equation of state, which by Eq. (13) during this epoch is
wDE þ 1 ≃ 2ϵ ≃ Oð1Þðm6

slope=M
2
P1H

4
†Þ ≃ Oð1ÞðH4

0=H
4
†Þ.

Taking H† to be the Hubble scale at dark energy-matter
equality, wDE can be measurably different from −1.
Note also that since the Universe is large, it should be
spatially positively curved [2], with Ωk < 0. A detailed
analysis to better quantify these predictions is certainly
warranted.
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