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The solution to the problem of finding a time-optimal control Hamiltonian to generate a given unitary
gate, in an environment in which there exists an uncontrollable ambient Hamiltonian (e.g., a background
field), is obtained. In the classical context, finding the time-optimal way to steer a ship in the presence of a
background wind or current is known as the Zermelo navigation problem, whose solution can be obtained
by working out geodesic curves on a space equipped with a Randers metric. The solution to the quantum
Zermelo problem, which is shown here to take a remarkably simple form, is likewise obtained by finding
explicit solutions to the geodesic equations of motion associated with a Randers metric on the space
of unitary operators. The result reveals that the optimal control in a sense “goes along with the wind.”
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The problem of finding the optimal Hamiltonian for
processing a given quantum state, or implementing a
quantum operation (gate), in the shortest possible time
subject to certain constraints, has attracted considerable
attention over the past decade [1–8]. Broadly speaking, the
task can be classified into two closely related categories:
(a) transforming one quantum state into another; and
(b) transforming one unitary operator into another, in the
shortest possible time. If the constraint is concerned merely
with a limit on the energy resource, then the optimal
Hamiltonian is time independent, and can be found easily
by noting that under a unitary motion, the shortest path
coincides with the path along which the speed of evolution
is also maximized [9,10]. If there are further constraints,
for example, the choice of the Hamiltonian is limited, then
often a time-dependent Hamiltonian that minimizes an
action has to be determined by variational approaches
[11,12]. Finding a solution to such a variational problem is
in general difficult; however, an efficient numerical regu-
larization scheme to obtain an approximate solution has
been proposed more recently [13].
For many problems related to controlling quantum

systems considered in the literature, it is assumed that the
experimentalist has full control over the allowable range of
Hamiltonians within the constraint, whereas in a laboratory
there can often be situations inwhich the system is immersed
in an external field or potential that is beyond control (e.g.,
gravitational or electromagnetic field), since a complete
elimination of external fields in a laboratory can be pro-
hibitively expensive for the given task. Evidently, this is a
generic issue that needs to be addressed adequately to be
able to accurately implement a rapid quantum processing.
In the present Letter we address this issue by finding

the time-optimal control Hamiltonian ĤðtÞ ¼ Ĥ0 þ Ĥ1ðtÞ
that generates a unitary motion to transform one unitary

operator ÛI into another operator ÛF, subject to the
constraints (i) that the background Hamiltonian Ĥ0 cannot
be controlled, (ii) that the control Hamiltonian fulfills the
energy resource bound of the form trðH2

1Þ ¼ 1 at all time,
and (iii) that the background Hamiltonian is not dominating
in the sense that trðĤ2

0Þ < trðĤ2
1Þ. This is the quantum

counterpart of a well-known classical navigation problem
posed by Zermelo: given the present location in the ocean,
with a given wind and/or current distribution characterized
by a location-dependent vector field, one wishes to find the
optimal control of the vessel so as to reach the destination
in the shortest possible time [14,15]. The vector field
generated by the reference Hamiltonian Ĥ0 can be thought
of as representing the background wind or current, whereas
Ĥ1 determines the control.
In the classical context, it was observed by Shen [16] that

the solution to the Zermelo navigation problem can be
obtained by finding the geodesic curves associated with a
Randers metric on the configuration space. Motivated by
this result, more recently Russell and Stepney [17] intro-
duced the quantum Zermelo navigation problem stated
above, and analyzed the shortest time required to realize the
transformation ÛI → ÛF. Their observation that quantum
Zermelo navigation problems can be solved by finding
the geodesics of Randers metrics opens up the possibility
of addressing a wide range of realistic quantum control
problems where the environmental influence cannot be
eliminated. However, analyses involving Randers spaces
are generally difficult, and finding solutions to the geodesic
equations is not straightforward [18,19]. Indeed, the only
examples considered in [17] concern the time-independent
cases, while the optimal navigation is realized by a
time-independent Hamiltonian only if the background
Hamiltonian Ĥ0 happens to be the one that realizes the
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operation ÛI → ÛF [20]. But since ÛI and ÛF are arbitrary
given unitary gates one wishes to implement, such a
scenario will not prevail in real laboratories.
Here we solve this problem by deriving the Euler-

Poincaré equation of motion for the control Hamiltonian
Ĥ1ðtÞ, and obtain the solution in closed form. Remarkably,
we find that the solution to the quantum Zermelo navi-
gation problem takes the simple form

Ĥ1ðtÞ ¼ e−iĤ0tĤ1ð0ÞeiĤ0t; ð1Þ

where Ĥ1ð0Þ is the initial condition such that the motion
generated by the total Hamiltonian ĤðtÞ ¼ Ĥ0 þ Ĥ1ðtÞ
takes ÛI to ÛF. Thus, the optimal control is obtained by
finding the initial direction H1ð0Þ for the maneuver and
drift along the “wind” Ĥ0. We then provide a scheme for
finding the initial condition Ĥ1ð0Þ. The results are illus-
trated in terms of a spin-1

2
system. We shall also indicate

how the analysis presented here can be applied to situations
where there are further constraints on the control
Hamiltonian.
Since the mathematical machinery required for solving

the navigation problem is perhaps not widely accessible
to the broader physics community, we begin with a brief
discussion of the background concepts before proceeding
to derive (1). To address such navigation problems in the
calculus of variation, it is often the case that one requires
the notion of a distance that depends not only on the
location but also on the direction—a concept that goes
outside of the realm of Riemannian geometry. Specifically,
for a given curve xiðtÞ on the configuration space M,
equipped with a Riemannian metric, we consider the
integral of the form

T ¼
Z

t1

t0

Fðxi; _xiÞdt ð2Þ

for some positive function F, which is assumed to be
homogeneous of first degree in _xi, Fðxi; λ_xiÞ ¼ λFðxi; _xiÞ
for any λ > 0, so that T is independent of the choice of the
parameter t along xiðtÞ. Thus, Fðxi; _xiÞ defines, for each
fixed point xi ∈ M, a distance on the tangent space of M.
In particular, the level surface Fðx; _xÞ ¼ 1 on the tangent
space of M at x defines the indicatrix [15]. Now, for a
fixed x and an arbitrary point ξ on the tangent space

of M at x, the ray ~xξ clearly intersects the indicatrix at a
point ρξ. Thus, conversely, for each point ξ if we define a
function F according to FðξÞ ¼ jξj=jρξj, where j · j denotes
the Euclidean norm, then we can introduce a metric, known
as the Minkowski metric [21], as follows: For ξ; ξ0 on
the tangent space of M at x the distance between these
points is defined by Dðξ; ξ0Þ ¼ Fðξ − ξ0Þ. In particular,
the metric tensor defined on M induced by the distance
function D associated with the fundamental function F can
be expressed in the form

gijðx; _xÞ ¼
1

2

∂2

∂ _xi∂ _xj F
2ðxi; _xiÞ; ð3Þ

and we have F2 ¼ gij _xi _xj.
In classical mechanics, often the fundamental function

takes the form of the kinetic energy: F2 ¼ γijðxÞ_xi _xj.
Thus, the resulting metric gijðx; _xÞ ¼ γijðxÞ is independent
of the direction _x; i.e., it defines a Riemannian metric
on M, since the indicatrix is just a sphere. In many
problems with engineering applications, such as a navi-
gation problem, however, the relevant function takes
a different form, and one is required to go beyond
the techniques of Riemannian geometry. Realizing this,
Carathéodory suggested to his then Ph.D. student Finsler
to investigate the geometry of spaces equipped with
direction-dependent metrics [22] such as the one discussed
above. Subsequently, spaces endowed with locally
Minkowski metrics were referred to as Finsler spaces [23].
Let us now turn to the classical Zermelo navigation

problem of reaching a target on a manifold M equipped
with a Riemannian metric hij in the shortest possible time,
in the presence of background wind wi. The analysis of
the problem simplifies if we observe that it suffices to find
the locally optimal solution on the tangent space [16].

Specifically, for any vector ~ξ on the tangent space toM at x

we can regard j~ξjh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hijξiξj

q
as representing the time it

takes to reach the end point of ~ξ in the absence of wind.
Now suppose that the time it takes to reach the destination ~u
at full throttle is 1 in a suitable unit (e.g., seconds), i.e.,
j~ujh ¼ 1. In the presence of wind, with j~wjh < 1, however,
after a journey of one second at full throttle the vessel will
reach the point ~v ¼ ~uþ ~w, instead of the destination ~u.
In other words, the unit sphere j~ujh ¼ 1 has been displaced
by the wind, but since j~wjh < 1 by assumption, the center
point x remains in the interior of the sphere. Therefore, for

any vector ~ξ on the tangent space the ray ~xξ intersects the
indicatrix at a point ρξ; working out the Euclidean norms of
~ξ and ~ρξ and taking the ratio, a short calculation shows that
the fundamental function takes the form (see also [24,25])

Fðx; ξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~w; ~ξi2h þ j~ξj2hð1 − j~wj2hÞ

q
− h~w; ~ξih

1 − j~wj2h
; ð4Þ

where j~ξj2h ¼ hijξiξj and h~w; ~ξih ¼ hijwiξj. Making use of
(3), an explicit form of the metric on M can be obtained.
The calculation simplifies if one writes

αij ¼
hij

1 − j~wj2h
þ wiwj

ð1 − j~wj2hÞ2
; βi ¼ −

wi

1 − j~wj2h
; ð5Þ

where wi ¼ hijwj, so that we have F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αijξ

iξj
q

þ βiξ
i.

The solution curves to the Zermelo navigation problem are
then found by working out the geodesics of the metric.
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We remark that the metric of the type
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αijξ

iξj
q

þ βiξ
i

was introduced by Randers in the context of a unified
theory of gravitation and electromagnetism [26]. However,
Randers was unaware of the Finslerian nature of the metric,
and attempted to interpret it in the Riemannian sense in the
context of a five-dimensional Kaluza-Klein theory. Randers
metrics are perhaps the most commonly investigated
Finsler metrics in physical applications such as the electron
microscope [27] and in propagation of sound and light rays
in a moving medium [25,28,29].
The relevance of Finsler geometry to problems in

quantum control has been observed in [30,31]. In the
presence of background fields, more recently Russell and
Stepney [17] proposed the technique of Shen [16] to be
applied to the manifold M of special unitary matrices
endowed with the bi-invariant Hilbert-Schmidt norm.
Specifically, working with the elements of the Lie algebra
ξ̂; ξ̂0 ∈ suðNÞ we have

hξ̂; ξ̂0ih ¼ trðξ̂†ξ̂0Þ: ð6Þ

With this setup we wish to minimize the journey time (2)
in the presence of wind given in suðNÞ by −iĤ0, when
ξ̂ ¼ −iĤðtÞ ¼ −i(Ĥ0 þ Ĥ1ðtÞ). The fundamental function
(4) in this quantum context thus reads

Fðξ̂Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½trðξ̂Ĥ0Þ�2þ trðξ̂2Þ(1− trðĤ2

0Þ)
q

− trðξ̂Ĥ0Þ
1− trðĤ2

0Þ
; ð7Þ

which is just the Finslerian norm ∥ξ̂∥.
To proceed we find it convenient to minimize the kinetic

energy 1
2

R
F2dt along the path, instead of

R
Fdt. It should be

evident that the optimal path ξ̂ðtÞ that minimizes the latter
also minimizes the former. Writing F2ðξ̂Þ ¼ ∥ξ̂∥2 we have

δ∥ξ̂∥2 ¼
�
δ∥ξ̂∥2

δξ̂
; δξ̂

�
¼ 2∥ξ̂∥

�
δ∥ξ̂∥
δξ̂

; δξ̂

�
; ð8Þ

where we have written, for any ν̂ ∈ suðNÞ and any fðξ̂Þ,�
δfðξ̂Þ
δξ̂

; ν̂

�
¼ d

dϵ
fðξ̂þ ϵν̂Þj

ϵ¼0
; ð9Þ

and on account of (7) we have

�
δ∥ξ̂∥
δξ̂

; ν̂

�
¼ −i

trðν̂Ĥ0Þ
1 − trðĤ2

0Þ
þ i

trðξ̂Ĥ0Þtrðν̂Ĥ0Þ þ (1 − trðĤ2
0Þ)trðξ̂ ν̂Þ

ð1 − trðĤ2
0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½trðξ̂Ĥ0Þ�2 þ trðξ̂2Þ(1 − trðĤ2

0Þ)
q : ð10Þ

Our aim is to solve

0 ¼ δ

�
1

2

Z
1

0

∥ξ̂∥2dt
�

¼
Z

1

0

∥ξ̂∥
�
δ∥ξ̂∥
δξ̂

; δξ̂

�
dt ð11Þ

with fixed end points of the curve on SUðNÞ. The cons-
traints on the end points restrict admissible variations δξ̂. In
particular, a standard result of Euler-Poincaré reduction
[32] asserts that

δξ̂ ¼ _̂η − ½ξ̂; η̂�; ð12Þ
where η̂ is an arbitrary curve in suðNÞ with
η̂ð0Þ ¼ η̂ð1Þ ¼ 0. Substituting (12) and (10) in (11) and
rearranging terms, we are thus led to the relation

0 ¼ −∂tð∥ξ̂∥ÞĤ0 − ∥ξ̂∥½Ĥ0; ξ̂�

þ ∂t

�
∥ξ̂∥ffiffiffiffiffiffi� � �p trðξ̂Ĥ0Þ

�
Ĥ0 þ

∥ξ̂∥ffiffiffiffiffiffi� � �p trðξ̂Ĥ0Þ½Ĥ0; ξ̂�

þ (1 − trðĤ2
0Þ)∂t

�
∥ξ̂∥ξ̂ffiffiffiffiffiffi� � �p

�
; ð13Þ

where we have written
ffiffiffiffiffiffi� � �p

for the square-root term
appearing in the numerator of (7). This result appears
unduly complicated; however, if we take note of the fact
that we are interested in the quantum navigation at full
throttle, i.e., ∥ξ̂∥ ¼ 1, then by taking the relevant time

derivatives in (13) we deduce the Euler-Poincaré equation

of the form _̂ξþ i½Ĥ0; ξ̂� − ðiĤ0 þ ξ̂Þtrð _̂ξĤ0Þ= ffiffiffiffiffiffi� � �p ¼ 0.
Substituting ξ̂ ¼ −i(Ĥ0 þ Ĥ1ðtÞ) in here we thus obtain
the relevant equation of motion for the control Hamiltonian:

−i _̂H1 þ ½Ĥ0; Ĥ1� þ Ĥ1trðĤ0
_̂H1Þ= ffiffiffiffiffiffi� � �p ¼ 0. If we elimi-

nate the square-root term using (7) along with
Fðξ̂Þ ¼ ∥ξ̂∥ ¼ 1, which gives us i

ffiffiffiffiffiffi� � �p ¼ 1þ trðĤ0Ĥ1Þ,
then we deduce that

_̂H1 þ i½Ĥ0; Ĥ1� −
Ĥ1

1þ trðĤ1Ĥ0Þ
trðĤ0

_̂H1Þ ¼ 0; ð14Þ

where we have made use of the constraint that trðĤ2
1Þ ¼ 1.

Multiplying (14) with Ĥ0 and taking the trace, we thus
deduce that trðĤ0

_̂H1Þ ¼ 0. We therefore conclude from
(14) that the quantum Zermelo-Euler-Poincaré equation
takes the simple form

_̂H1 þ i½Ĥ0; Ĥ1� ¼ 0: ð15Þ

This, however, is just the equation for a co-adjoint motion,
so it can be solved, with the solution (1).
It is interesting to observe that, after some lengthy but

straightforward algebra, we are led to a simple and intuitive
solution to the quantum navigation problem, namely, that
we must pick the initial direction Ĥ1ð0Þ and let it be
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advected by the prevailing field Ĥ0. To hit the right target
ÛF starting from the initial point ÛI , however, the initial
direction Ĥ1ð0Þ has to be chosen appropriately. In what
follows we shall derive an ordinary differential equation
satisfied by the initial direction.
We proceed by first solving the navigation problem in

the absence of the wind: Ĥ0 ¼ 0. In this case, the optimal
control Ĥ1 is time independent, and the initial condition
Ĥ1ð0Þ can thus be obtained by taking the matrix logarithm
of ÛFÛ

−1
I . The idea behind our scheme is to gradually

increase Ĥ0 from zero to the level specified by the problem,
while calculating, for each increment of Ĥ0, the optimal
control Hamiltonian that solves the Zermelo problem with
that wind. Clearly, as Ĥ0 is increased, Ĥ1ð0Þ has to be
adjusted as well, or else the target gate will be missed.
Moreover, the trajectory might take slightly more or
slightly less time. Hence, the duration of the trajectory
needs also be adapted.
With this in mind, let us calculate how the final gate

varies when the wind, the initial control, and the terminal
time are adjusted infinitesimally. Let ÛðtÞ be a curve in
SUðNÞ starting at ÛI satisfying ∂tÛ ¼ ξ̂ Û for some curve
ξ̂ in suðNÞ, and fix a time s. If ξ̂ðtÞ þ ϵδξ̂ðtÞ is a variation
of ξ̂, then ÛðsÞ varies as

δÛðsÞ ¼ ÛðsÞ
Z

s

0

ÛðtÞ−1δξ̂ðtÞÛðtÞdt: ð16Þ

This follows from adapting Lemma 2.4 of [33] to the
present context. To proceed, let us write Ĥ1ð0; λÞ for
the optimal initial control and Tλ for the duration of the
trajectory when the wind is given by λĤ0, λ ∈ ½0; 1�. Let us
further denote by ÛλðtÞ the corresponding geodesic curve
in SUðNÞ. In what follows we shall write derivatives with
respect to λ as T 0, Û0

λ, and so on. Notice that ÛλðTλÞ equals
the target gate ÛF for all λ. Hence, Û0

λðTλÞ ¼ 0. Using (16),
we thus obtain

0 ¼ Û−1
λ ðTλÞÛ0

λðTλÞ

¼
Z

Tλ

0

ÛλðtÞ−1ξ̂0λðtÞÛλðtÞdtþ T 0
λÛ

−1
λ ðTλÞξ̂λðTλÞÛλðTλÞ:

ð17Þ
Recall that ξ̂λðtÞ ¼ −i(λĤ0 þ Ĥ1ðt; λÞ), where Ĥ1ðt; λÞ
is given by (1). Therefore, upon differentiation,
ξ̂0λðtÞ ¼ −ie−iĤ0λt(Ĥ0 þ it½Ĥ1ð0;λÞ; Ĥ0� þ Ĥ1

0ð0; λÞ)eiĤ0λt,
from which it follows that (17) is a linear equation in T 0

λ and
Ĥ1

0ð0; λÞ, admitting a unique solution for each λ once the
linear constraint tr(Ĥ1ð0; λÞĤ1

0ð0; λÞ) ¼ 0 is taken into
account. Finally, T 0

λ and Ĥ1
0ð0; λÞ can be integrated up to

λ ¼ 1 starting from the wind-free solution λ ¼ 0. The
optimal initial control is then given by Ĥ1ð0; 1Þ, and the
trajectory is traversed in time T1.

In summary, we have derived the Euler-Poincaré equa-
tion (15) associated with the quantum Zermelo navigation
problem introduced in [17]. The equation of motion is
surprisingly simple, and admits an elementary solution (1).
We have provided a scheme which allows for the deter-
mination of the initial control Hamiltonian Ĥ1ð0Þ required
to hit the correct target gate ÛF. On account of linearity, our
scheme can easily be implemented in practice. With the
solution (1) at hand, optimal quantum control with finite
energy resources becomes feasible under the presence of
external field or potential that might be difficult to eliminate
in laboratories. As an illustrative example let us consider
the control of a spin-1

2
system, where the objective is to

transform ÛI ¼ 1 into ÛF ¼ e−iπσ̂x=2 ¼ −iσ̂x, under the
influence of an external field Ĥ0 ¼ −ωσ̂z, where σ̂x; σ̂y; σ̂z
are the Pauli matrices. In this example a closed-form
expression for the optimal initial Hamiltonian Ĥ1ð0Þ can
be obtained on account of the relation (cf. [34,35])
ÛF ¼ −iσ̂x ¼ eiωσ̂zTe−iĤ1ð0ÞT , which follows from (1).
Specifically, a calculation shows that Ĥ1ð0Þ ¼ 1ffiffi

2
p n · σ̂

and T ¼ π=
ffiffiffi
2

p
, where the unit vector n is given by

n ¼ ½cosðωTÞ; sinðωTÞ; 0�. The resulting unitary orbit
ÛðtÞ is sketched in Fig. 1 for a range of values of ω.
We conclude by remarking that in the presence of

additional constraints on the control Hamiltonian that limit
the implementability of (1), it suffices to include them in

FIG. 1 (color online). Optimal generation of target unitary gate.
The time-optimal trajectories ÛðtÞ are shown for various wind
strengths ω ¼ 0; 0.25; 0.5; 0.75; 1, as curves in the rotation group
using the standard covering map. The center of the sphere
corresponds to the initial gate ÛI ¼ 1, while the terminal point
that lies on the surface of the sphere is the target gate ÛF ¼ −iσ̂x.
The direction of the vector joining the center 1 to a point ÛðtÞ on
a given curve represents the axis of rotation, whereas the length of
the vector represents the angle of rotation. The sphere, upon
which the target gate lies, thus has radius π.
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the maximization of F2 by use of Lagrange multipliers. It
then follows that the solution (1) remains valid, except that
the initial control H1ð0Þ is replaced by a time-dependent
one (cf. [34]). More precisely, what the solution (1) shows
is that it is possible to switch to a frame that moves in the
counter direction to the wind so that the analysis of
constrained optimization performed, for example, in [11]
with time-dependent constraints, becomes applicable. In
this manner the solution to the Zermelo navigation problem
presented here can be extended straightforwardly to accom-
modate further constraints that one might encounter for
instance in systems involving a large number of coupled
spins where controllable degrees of freedom are typically
limited.

We thank Gary Gibbons for drawing our attention to
[17,25,29].

Note added.—Russell and Stepney have independently
obtained the solution (1) to the quantum Zermelo navi-
gation problem [35], using a theorem of Ref. [36] on
geodesics of Randers spaces (rather than deriving and
solving the Euler-Poincaré equation as we have done here).
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