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Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal
oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-
orbital liquids. Here, we consider two-component (spin 1=2) fermionic atoms with strong repulsive
interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter
filling of the p band when the density fluctuations are suppressed, and show that it frustrates the
development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with
ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each
realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.
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Quantum gases of ultracold atoms have served success-
fully as quantum simulators of important superfluid and
spin models derived from condensed matter. A much less
explored potential is to use them to gain deeper under-
standing of many-body orbital correlations. Electronic
materials such as transition metal oxides have shown
intriguing phases where the role of the orbital is found
crucial [1,2]. In Mott insulators with degenerate d orbitals,
charge fluctuations are frozen by the strong Coulomb
repulsion. At low energies, the spin and orbital degrees
of freedom of neighboring sites are coupled by spin-orbital
superexchange. A well known example is the Kugel-
Khomskii (KK) model for eg orbitals [3]. Often the
spin-orbital exchange is frustrated; i.e., the exchange
energy cannot be minimized simultaneously for all the
bonds joining at the same site. Orbital degeneracy tends
to enhance quantum fluctuations and suppress long-range
order [4,5], thus providing an alternative route to realize
exotic magnetic order or quantum spin liquids [6]. For
example, the lack of magnetic order down to 0.35 K
suggests that LaSrVO4 is a candidate for the spin-orbital
liquid state [7]. There is also strong theoretical evidence
that the ground state of the SU(4) symmetric KK model on
the honeycomb lattice is a disordered quantum spin-orbital
liquid [8]. From this perspective, it would be great to
engineer a physical system to realize and probe such spin-
orbital exchange models without the complication from
other degrees of freedom such as lattice vibrations.
Motivated by experiments on the higher orbital bands

of optical lattices [9–14], we examine the possibility of
realizing spin-orbital exchange for strongly interacting
atoms on the p band of a two-dimensional (2D) optical
lattice at commensurate fillings (i.e., the Mott limit).
Because of the specific symmetries of the p orbitals and

the atomic interactions, we expect that the spin-orbital
exchange of p-band fermions acquires a few unique
features distinguishing it from the KK exchange of
d-orbital electrons with Coulomb interaction. Our main
goal is to find the resultant spin and orbital long-range
order, or the lack thereof, in simple optical lattice settings
achievable in experiments. Previously, the orbital exchange
for single component (spinless) fermions on the p band has
been discussed by two of us [15] andWu [16]. The work on
two-component (spin 1=2) p-band fermions has largely
focused on spin-only models and the ferromagnetic or
antiferromagnetic long-range order, for example, for the
half filled cubic lattice [17] and various fillings of
2D lattices [18–20].
In this Letter we focus on 1=4 filling of the p band,

where density fluctuations are suppressed by repulsive
interactions between fermions with either the same or
opposite spin, and derive the effective exchange interaction
between the orbital and spin degrees of freedom. We show
that locally for an individual bond, the spin-orbital
exchange prefers the alignment of the p orbitals and the
formation of a spin singlet. Such a lowest energy configu-
ration apparently cannot be achieved for all the bonds at
once. To partially alleviate the frustration, the system settles
into a spin-disordered ground state with ferro-orbital order
that is spatially organized into chains. This conjecture is
supported by exact diagonalization of finite systems with
various sizes and boundary conditions. Such a quasi-one-
dimensional spin liquid is in dramatic contrast to the long-
range magnetic order of p-band fermions predicted for
other regimes such as half filling [17]. Our results indicate
that p-band fermions, and more generally spin-orbital
exchange of ultracold atoms, offer rich possibilities for
novel states of matter.
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First, we show how the spin-orbit exchange can arise
from the microscopic Hamiltonian of interacting atoms on
an optical lattice. For simplicity, consider a 2D optical
lattice on the xy plane, with a lattice depth V much larger
than the recoil energy ER. The lattice potential at each
lattice site is then well approximated by a 2D harmonic
oscillator of frequency ω. The Wannier functions are
approximated by the corresponding wave functions of
the harmonic oscillator: the ground state s orbital, the
doubly degenerate first excited state px and py (or x and y
for short) orbital, etc. The excitation energy from the s to
the p orbital is ℏω. The s-wave scattering between two
hyperfine species of fermionic atoms, referred to as spin
up and down, is well described by a contact interaction.
We assume it is repulsive and its strength is controlled by
tuning the magnetic field around a Feshbach resonance.
Expanding the fermion field operator in the Wannier basis
and computing the direct and exchange integrals using
the wave functions of the s and p orbitals, the interaction
Hamiltonian for each site becomes

HA ¼ Uns↑ns↓ þ
3U
4

½nx↑nx↓ þ ny↑ny↓�

þ U
4
½nx↑ny↓ þ ny↑nx↓ þ Δ†

xΔy þ Δ†
yΔx − Sþx S−y

− Sþy S−x � þ � � � ;

where the ellipsis includes terms coupling the s and p
orbitals, and terms involving higher orbitals. Here,
nμ;σ ¼ c†μ;σcμ;σ , Sþμ ¼ c†μ;↑cμ;↓, Δμ ¼ cμ;↑cμ;↓, and c†μσ is
the fermion creation operator for orbital μ ¼ s; x; y and spin
σ ¼ ↑;↓. The on site interaction energy is U > 0 for two
atoms in the s orbital, and U=4 for two atoms in the px and
the py orbitals, respectively. The numerical difference is
due to the different shapes of the s and p orbitals. We
observe that besides the density interactions (n↑n↓), Hund’s
rule coupling (SþS−) and pair transfer (Δ†Δ) terms are of
the same order and equally important.
We assume that there is a large on site repulsive

interaction U0 between fermions of the same spin,
U0 ≫ U. It forbids two fermions of the same spin (more
generally, spin triplets) from occupying the same site, e.g.,
one occupying the px orbital and the other occupying py. If
U0 is absent or weak, fermions can hop around resulting in a
metallic state with ferromagnetic long-range order [20],
instead of a Mott state. This has been proved rigorously in
the limit of U → ∞ [20] and conjectured to hold also for
finite U [21]. It is challenging, but in principle feasible, to
achieve a large U0 experimentally, e.g., by using an optical
Feshbach resonance to tune the p-wave interaction, as
theoretically proposed in Ref. [22,23] and experimentally
demonstrated in Ref. [24]. Large p-wave interaction was
also assumed for spinless p-orbital fermions in previous
work [15,16,25,26]. Note that in solids the interorbital

interactions between electrons with the same or opposite
spin enjoy a higher degree of symmetry and cannot be
tuned individually.
We focus on the case of three atoms per site. Without

interaction (U ¼ 0), two atoms of opposite spin fill the s
orbital, and the third atom occupies either the px or py

orbital, corresponding to quarter filling of the p band. In the
presence of on site interaction HA, diagonalization of HA
shows that as long as U < Uc ¼ ℏω=1.4, the ground state
configuration remains roughly the same. The probability
for the px (or py) orbital to be doubly occupied due to
interaction is less than 4.2%. In what follows, we shall
assume U ≪ ℏω. Then, the doubly occupied s orbital is
well separated from the p orbital in energy. It will remain
dynamically inert and can be safely neglected. Then, HA
reduces to a p-orbital only Hamiltonian taking the follow-
ing compact form:

Ha ¼ −
U
8
½L2

z þ 4~S2� þ 3U
8

ðnx þ nyÞ:

Here, the spin and angular momentum operators are

defined as ~S ¼ 1
2
c†μ;σσσ;σ0cμ;σ0 , Lz ¼ ð−iÞ½c†x;σcy;σ − H:c:�,

and nx ¼ nx;↑ þ ny;↓ [27]. Repeated indices, μ ¼ x; y and
σ ¼ ↑;↓, are summed over, and σ is the Pauli matrix. With
only one fermion on the p orbital, the ground state is
fourfold degenerate. We introduce a graphic notation for
these four states (see Fig. 1). The upper (lower) semicircle
denotes the px (py) orbital, and an up (down) arrow
indicates the orbital is occupied by an atom with spin
up (down).
Besides the on site interaction Ha proportional to U, the

p-orbital fermions can also hop. On the square lattice, the
leading process is the longitudinal hopping

Ht ¼ t
X
i;σ

c†x;σðiÞcx;σðiþ x̂Þ þ c†y;σðiÞcy;σðiþ ŷÞ þ H:c:

Namely, px (py) fermions only hop along the x (y) axis
between nearest neighbors. Here, i labels the site and is the
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FIG. 1 (color online). Virtual hopping processes giving rise to
the spin-orbital exchange. i and j label two neighboring sites.
An arrow in the upper (lower) semicircle means the px (py)
orbital is occupied by atoms of given spin. a; b; c are intermediate
states for two atoms on the same site j.
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short-hand notation for the lattice vector Ri with the lattice
spacing set to 1. We neglect transverse hopping, e.g., px
fermions hopping in the y direction. Its magnitude is only
t=8 for V ¼ 5ER and further decreases as V=ER increases.
The total Hamiltonian for the p-orbital fermions then isP
iHaðiÞ þHt. We focus on Mott states corresponding to

quarter filling of the p band with equal spin populations in
the strongly correlated regime U0 ≫ U ≫ t. The large on
site repulsion suppresses density fluctuations. In the lowest
order approximation, Ht can be neglected so the system
decouples into individual sites, each described by Ha. Its
ground state has a massive degeneracy 4N, where N is the
number of sites. Ht appears as a perturbation to the atomic
Hamiltonian

P
iHaðiÞ. Virtual hopping processes give rise

to spin-orbital exchange interaction between neighboring
sites. The spin-orbital exchange can be obtained by
standard second order perturbation theory [28]. It lifts
the degeneracy and dictates the spin and/or orbital order
within the Mott state.
First, consider a bond along the x direction connecting

site i and j ¼ iþ x̂. As shown schematically in Fig. 1, in
the initial state, each site has one fermion in the p orbital.
Hopping of a px fermion, say from i to j, creates an
intermediate state jni with two fermions on site j.
Diagonalization of Ha shows that there are three such
eigenstates, n ¼ a; b; c (see Fig. 1), with excitation energy
ϵa;b ¼ U=2, and ϵc ¼ U. Note that the px fermion has to
hop back to its initial position site i from the intermediate
state, because the py fermion cannot hop in the x direction.
In addition, the exchange interaction is restricted to the
singlet channel (the exchange in the triplet channel is on the
order of t2=U0, which is negligible). Thus, the spin-orbital
exchange is most easily obtained by using projection
operators

Hi
x ¼ −

X
n¼a;b;c

X
μ;ν

t2

ϵn

�
1

4
− ~Si · ~Sj

�
PiμPjν: ð1Þ

Here, μ; ν ¼ x; y denotes the initial orbital state of site i
and j, respectively, and ϵn is the excitation energy of the
intermediate state jni. Piμ is the orbital projection operator
corresponding to state jiμi, i.e., one fermion in orbital μ at
site i,

Pix ≡ jixihixj≡ 1=2þ τzi ;

Piy ≡ jiyihiyj≡ 1=2 − τzi ; ð2Þ

where we also introduced the pseudospin operator τz in the

orbital space. ð1=4 − ~Si · ~SjÞ is the projector operator onto
the spin singlet channel. Collecting terms, we obtain

Hi
x ¼

t2

U

�
~Si · ~Sj −

1

4

��
5

2
þ 3τzi þ 3τzj þ 2τzi τ

z
j

�
: ð3Þ

This is one of the central results of this Letter. By
symmetry, the exchange along bonds in the y direction,
j ¼ iþ ŷ,

Hi
y ¼

t2

U

�
~Si · ~Sj −

1

4

��
5

2
− 3τzi − 3τzj þ 2τzi τ

z
j

�
: ð4Þ

The low energy effective Hamiltonian for the p-band
fermions is the sum of the spin-orbit exchange for all
the bonds on the square lattice

Hso ¼
X
i

½Hi
x þHi

y�: ð5Þ

It is illuminating to compare Hso with the SU(4)
symmetric KK model [8,29–31], where the exchange takes
the form ð~Si · ~Sj þ 1=4Þð~τi · ~τj þ 1=4Þ, or the original KK
model [3,32] for eg electrons where the exchange along the
three cubic axes (a; b; c) involves different pseudospin
operators τaðbÞ ¼ ð� ffiffiffi

3
p

τx − τzÞ=2 and τc ¼ τz. Here, only
τz appears in Hso. The coupling is Ising-like in the orbital
sector but Heisenberg-like in the spin sector. Hso has
discrete symmetry τz → −τz corresponding to C4 rotation,
x → y. This can be traced back to the spatial symmetries
of the p orbitals, and as a result, Hso differs also from
the superexchange of t2g orbitals, which features stronger
spin-orbital fluctuations [33]. Gorshkov et al. [34] have
proposed that KK-type models can be engineered using
alkaline earth atoms, where two electronic states of atoms
play the role of orbitals. Here, inHso the orbital refers to the
Wannier orbital of atoms on the lattice, as in the original
KK model, rather than its internal electronic states.
In the remainder of this Letter, we focus on the ground

state and the low energy excitations of Hso. We first
consider a single horizontal bond described by Hi

x.
Its ground state is a spin singlet and orbital triplet
with both orbitals aligned in the x direction, jψxi¼
1ffiffi
2

p ðji↑ijj↓i− ji↓ijj↑iÞ⊗ jixijjxi. As shown in Fig. 2(a),

the ground state energy is Ed ¼ −6J, where J ≡ t2=U is
the energy unit. Other orbital configurations within the spin
singlet sector have much higher energy. The ground state
for a vertical bond along y, jψyi, is obtained from jψxi by
replacing x → y. We shall refer to local states jψx=yi as

FIG. 2 (color online). (a) The eigenstates of Hi
x for a single

bond. (b) One of the degenerate ground state of a two-leg ladder.
The value of the nearest neighbor spin correlation is shown
graphically.
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dimers and represent them graphically as shaded ovals. They

have characteristic spin correlation h~Si ·~Sj−1=4i¼−1.
Clearly, on the square lattice, the x and y bonds joining
at a lattice site cannot minimize their energies to Ed
simultaneously. This is a classic syndrome of frustration,
which is quite common in spin-orbital exchange models.
Out of the four bonds connected to the same site, only one
can form a dimer. Take a 2 × 2 cluster (a plaquette) with
open boundary condition, for example. Exact diagonaliza-
tion (ED) shows that the ground state is twofold degenerate
with energy −12J. One of them is depicted in the bottom
plaquette of Fig. 2(b). It has ferro-orbital order

Q
ijiyi with

two spin singlets (shaded oval) formed on the two vertical
bonds, each achieving its lowest energy Ed. This leaves
the other two bonds frustrated. Similarly, Fig. 2(b) shows
one of the degenerate ground states of a 2 × 3 cluster with
periodic boundary condition in the y direction and open
boundary condition in the x direction. The orbital and spin
configuration also correspond to a dimer covering of the
lattice. However, ED analysis of Hso for bigger clusters
rejects dimer covering, and picks a state with ferro-orbital
long-range order, as the ground state of Hso for the infinite
lattice.
For instance, Fig. 3(a) shows the unique ground state of

a 3 × 4 cluster with periodic boundary conditions. It has
ferro-orbital order with hτzi i ¼ −1=2 for all the sites, i.e., all
orbitals aligning along y. There is however no spin order,

hSzi i ¼ 0. The spin correlation h~Si · ~Sj − 1=4i takes the
value of −1=4 for all horizontal bonds (thin lines) and −3=4
for vertical bonds (thick blue lines). Such a correlation
indicates that the cluster decouples into three vertical
chains, and the horizontal bonds are inactive and do not
contribute to the energy. Figure 3(b) shows the ground state
of an individual chain containing four sites with periodic
boundary condition in the y direction. According to ED,
it also has ferro-orbital order, and the ground state wave
function is the equal amplitude superposition of two dimer
coverings as graphically depicted in Fig. 3(b). The ground
state energy of the 3 × 4 cluster is exactly 3 times that of the
single chain. We have also verified that its ground state

wave function is nothing but the direct product of those of
the three individual chains. In comparison, a dimer cover-
ing as a trial state can only yield an energy expectation
value as low as −3.75J per site, much higher than −4.5J
of the ED ground state above. Similarly, a mean field
variational calculation of Hso assuming Néel order of spins
predicts ferro-orbital order but yields an even higher energy
of −3J per site. The development of ferro-orbital order and
the decoupling of the cluster into one-dimensional (1D)
chains are also observed for two-leg (2 × 4 and 2 × 6)
and three-leg (3 × 4) ladders with y-periodic boundary
conditions. Figure 4 summarizes the ground state energy
per site Eg=N for 1D chains, two-leg ladders, and the
3 × 4 cluster. The value of Eg=N is identical, e.g., for the
3 × 4, 2 × 4, and 1 × 4 cluster, revealing the decoupling of
the ladder or cluster into chains.
From the evidence above, we infer that spin-orbital

exchange favors ferro-orbital order on the square lattice,
where the p orbitals at all sites align in the x (or y)
direction. At low temperatures, T < J, the 2D system
dynamically decouples into 1D chains. With the orbital
degree of freedom frozen out, each chain is described by a
spin 1=2 antiferromagnetic Heisenberg Hamiltonian

H1D ¼ 6J
X
i

�
~Si · ~Siþ1 −

1

4

�
: ð6Þ

This 1D model is exactly solvable by the Bethe ansatz [35].
Finite size scaling of our ED results by fitting Eg=N to
polynomials of 1=N indeed shows Eg=N extrapolates to
−ðln 2Þ6J ¼ −4.159J as N → ∞, in excellent agreement
with the Bethe ansatz (see Fig. 4). As is well known, there
is no long-range spin order for the 1D Heisenberg model,
and its low energy effective model is a Luttinger liquid
featuring algebraically decaying spin correlation functions.
The orbital excitations are gapped, but the spin excitations
are gapless and highly anisotropic. The elementary

FIG. 3 (color online). (a) The ground state of Hso for a 3 × 4
cluster with periodic boundary conditions. (b) The ground state of
a single chain (1 × 4) with periodic boundary condition in the
y direction. The ground state energy Eg is measured in J ¼ t2=U.
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FIG. 4 (color online). The ground state energy per site Eg=N in
units of J obtained by exact diagonalization of Hso for different
clusters. Finite size scaling yields Eg=N ¼ −4.159J (filled star)
in the thermodynamic limit N → ∞.
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excitations are spinons traversing in the direction of the
ordered orbitals.
For simplicity, our discussion has so far assumed U0=U

to be large. We have numerically checked that the ferro-
orbital ground state is rather robust whenU0 is reduced. For
example, it persists as along as U0=U > 1.33 for a 2 × 4
ladder. Higher order perturbations such as a small trans-
verse hopping of p orbitals, t⊥, will introduce exchange
couplings between two neighboring chains each described
by H1D. It may eventually lead to long-range spin order at
extremely low temperatures, TL ∼ t2⊥=U ≪ J. For a broad
temperature window below J but above TL, experiments
will access the properties of Luttinger liquids. Compared to
the 1D Hubbard (or Heisenberg) model based on s-band
fermions, the hopping of p-band fermions, and accordingly
the exchange scale J, is significantly enhanced. This is
beneficial for the experimental exploration of the physics
beyond the Luttinger liquid paradigm, the quantum dynam-
ics and dimensional crossover of 1D antiferromagnets.
The spin-disordered ground state ofHso found here is not

as exotic as quantum spin liquids [6] in 2D with topological
order. Despite this, it serves as a dramatic, unprecedented
example of how orbital order enhances quantum fluctua-
tions to prevent spin order and lead to dimension reduction
in a quantum gas. It is similar in spirit to Tl2Ru2O7, which
is conjectured to self-organize into zigzag spin-1 chains
[36,37] due to orbital order at low temperatures. We stress
that spin-orbital exchange of p-band fermions acquires new
features that are closely tied to the p-orbital symmetry and
the specific forms of interaction for cold atoms. Our work
represents the first step to understand this new form of
spin-orbital exchange. HxðyÞ can be generalized to find Hso

for other 2D lattices, such as the triangular and hexagonal
lattices, by orbital rotations [15]. We conjecture that the
entanglement of the spin and orbital degrees of freedom, an
ensuing theme in spin-orbital physics [38], will play an
important role for these lattices. Finding their ground state
is a challenging open problem for future work.
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