
Two Copies of the Einstein-Podolsky-Rosen State of Light Lead
to Refutation of EPR Ideas

Krzysztof Rosołek,1 Magdalena Stobińska,1,2,* Marcin Wieśniak,1 and Marek Żukowski1
1Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

2Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
(Received 19 August 2014; revised manuscript received 10 December 2014; published 10 March 2015)

Bell’s theorem applies to the normalizable approximations of original Einstein-Podolsky-Rosen (EPR)
state. The constructions of the proof require measurements difficult to perform, and dichotomic
observables. By noticing the fact that the four mode squeezed vacuum state produced in type II down-
conversion can be seen both as two copies of approximate EPR states, and also as a kind of polarization
supersinglet, we show a straightforward way to test violations of the EPR concepts with direct use of their
state. The observables involved are simply photon numbers at outputs of polarizing beam splitters. Suitable
chained Bell inequalities are based on the geometric concept of distance. For a few settings they are
potentially a new tool for quantum information applications, involving observables of a nondichotomic
nature, and thus of higher informational capacity. In the limit of infinitely many settings we get a
Greenberger-Horne-Zeilinger-type contradiction: EPR reasoning points to a correlation, while quantum
prediction is an anticorrelation. Violations of the inequalities are fully resistant to multipair emissions in
Bell experiments using parametric down-conversion sources.

DOI: 10.1103/PhysRevLett.114.100402 PACS numbers: 03.65.Ud, 42.50.Xa

Introduction.—Quantum phenomena are counterintui-
tive and the formalism is even more so. Predictions of
quantum mechanics (QM) are of statistical nature: there is
no deterministic theory of response of individual systems to
all possible experiments. Some quantum predictions seem
paradoxical [1].
The Einstein-Podolsky-Rosen (EPR) paradox [2] was an

attempt to show that the quantum description of reality
cannot be complete. Elements of reality, properties of a
system, which can be established with perfect accuracy
without in any way disturbing it, were suggested to be the
missing component of the theory. EPR used perfectly
correlated systems to argue that such elements are derivable
from quantum predictions and the principle of relativistic
locality. There were some additional tacit assumptions in
the reasoning of EPR, like the freedom of the experimen-
talist to choose the observable to be measured, and the
equivalence of the actual experimental situation realized for
the given individual system, and a complementary one [3].
The second of these was challenged by Bohr [4]: “… there
is essentially the question of an influence on the very
conditions which define the possible types of predictions
regarding the future behavior of the system… In fact, it is
the mutual exclusion of any two experimental procedures,
permitting unambiguous definition of complementary
physical quantities, which provides room for new physical
laws, the coexistence of which at first sight appear
irreconcilable with the basic principles of science.”
50 years ago, Bell showed a technical flaw in the EPR

reasoning [5]: in Bohm’s version of the paradox [6], for a
two-spin 1=2 singlet, elements of reality are incompatible

with QM. They must satisfy Bell’s inequalities, while
quantum predictions violate them. A more striking
contradiction is shown by Greenberger, Horne, and
Zeilinger (GHZ) [7,8]: for three spin 1=2 particles, if
elements of reality exist, then 1 ¼ −1. These results led
to an “industry” that uses violations of Bell inequalities in
practical applications: e.g., reduction of communication
complexity [9], randomness generation [10], device-
independent quantum cryptography [11], and as entangle-
ment “witnesses” [12,13].
A question remained unresolved for many years: Does

Bell’s theorem hold true also for the EPR state? The
momentum representation of it is Ψðp1;p2Þ¼δðp1þp2Þ,
where pi is the momentum of the ith “particle.” Such
singular objects do not exist in the Hilbert space.
Nevertheless, they can be approximated by well-behaved
functions, which in some limit give δðp1 þ p2Þ. In
Ref. [14], Bell shows that the Wigner distribution for the
EPR state is non-negative in the entire phase space; thus,
there is no chance for a Bell inequality violation, as we have
the explicit local hidden variable model.
Meanwhile, Reid and Drummond [15,16] showed that

the state emitted by a nondegenerate optical parametric
amplifier, two mode squeezed vacuum, is an optical
approximation of the EPR state. This opened prospects
for observing approximate “original” EPR correlations.
Bell’s theorem for approximate EPR states was finally

given in [17] and [18]. The idea was to use different
observables than the ones discussed by EPR. Cohen [17]
used an approach which requires a highly specific inter-
ferometer, or coupling of the EPR state to a pair of spin 1=2
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ancillas. In Ref. [18], observables with singular Wigner
representations were used (parity operators, or no count
events, highly dependent on losses). In both cases dis-
placement was involved. It requires auxiliary coherent
states, and thus necessary filtering to get indistinguish-
ability of photons from different sources, which introduces
losses [19,20].
Below we review and reveal properties of the four-mode

squeezed vacuum state (SV) related with EPR paradox.
This leads us to formulation of specific chained Bell
inequalities, violated by the SV state. The nonclassical
phenomena related with SV can be used in quantum
information and communication, and allow for a GHZ-
like argument. The SV can be interpreted both as approxi-
mate two copies of the EPR state or a polarization
supersinglet. We conclude with a discussion and interpre-
tation of our results, and remarks on the feasibility of their
experimental demonstration. We emphasize that we do not
aim at seeking robust phenomena leading to loophole-free
Bell tests, but rather to reveal exciting phenomena linked
with the four-mode SV state. It constitutes both a realistic
resource for quantum technologies, and can lead to exciting
case studies in foundations of quantum theory.
Four-mode SV singlet state.—The standard method of its

generation employs a type II parametric down-conversion
(PDC) in a nonlinear crystal pumped by a laser beam [13].
This process is described by the Hamiltonian H ¼
igða†Hb†V þ eiϕa†Vb

†
HÞ þ H:c:, where in the notation for

creation operators letters a; b stand for distinct spatial
beams, and subscripts H;V for linear polarizations; the
coupling g is proportional to the pumping field. We assume
eiϕ ¼ −1. The output state is a superposition of maximally
entangled 2N-photon polarization singlet states

jΨð−Þi ¼
X∞
N¼0

λN jψ ð−Þ
N i; ð1Þ

where λN ¼ cosh−2 Γ
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
tanhN Γ,

P∞
N¼0 λ

2
N ¼ 1,

jψ ð−Þ
N i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p

N!
ða†Hb†V − a†Vb

†
HÞN j0i

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
XN
n¼0

ð−1ÞnjnH; ðN − nÞViajðN − nÞH;nVib:

ð2Þ

The symbol jnH; ðN − nÞVia denotes n horizontally and
N − n vertically polarized photons in beam a, similarly for

beam b. The states jψ ð−Þ
N i contain N photons in each beam.

Polarization of each beam is undefined. However, due to
equal photon numbers in the orthogonal polarizations
beams are anticorrelated. The effective strength of the
interaction is Γ ¼ gt, where t is the interaction time.

The unitary transformation generating Ψð−Þ is given by
eiHt, and can be factorized as eiHH;VteiHV;Ht, where HH;V ¼
igða†Hb†VÞ þ H:c: and HV;H ¼ −igða†Vb†HÞ þ H:c: The ini-
tial state is vacuum. We get two approximate EPR states,
two squeezed two-mode vacua: one for modes aH and bV
and the second one, for aV and bH.
EPR elements of reality vs jΨð−Þi.—Consider a Bell

experiment in Fig. 1. Two spatially separated observers,
Alice and Bob observe radiation of a pulse pumped source
producing the SV state. They control the orientation of their
local polarizing beam splitters, θA and θB, respectively, and
count photons at their outputs. The result of the local
measurement for run k is a certain number of θA linearly
polarized photons counted at Alice’s side nðkÞðθAÞ and at
Bob’s side mðkÞðθBÞ. Since the Hamiltonian is invariant
with respect to the choice of pairs of orthogonal (generally
elliptic) polarizations: H ¼ igða†θb†θ⊥ − a†

θ⊥b
†
θÞ þ H:c:,

where θ⊥ ¼ θ þ π=2, if θB ¼ θA þ π=2 then nðkÞðθAÞ ¼
mðkÞðθA þ π=2Þ. In the above notation θ ¼ 0 denotes
horizontal polarization H, etc. Recall that the two-
photon polarization singlet state of Bohm [6], ð1= ffiffiffi

2
p Þ×

ða†Hb†V − a†Hb
†
VÞj0i, is invariant with respect to U ⊗ U

polarization rotations. The four mode SV possess the same
invariance. Thus, it is a kind of polarization supersinglet,
with an undefined number of photons.
This feature of jΨð−Þi allows for an EPR-like reasoning

with different observables than the ones considered in
earlier works. A distant measurement at Alice’s side with
setting θA can fix Bob’s value for the kth run for his setting
θB ¼ θA þ π=2, without measuring it, and vice versa. Here,
we use the property nðkÞðθAÞ ¼ mðkÞðθA þ π=2Þ. This sug-
gest that nðkÞðθAÞ andmðkÞðθBÞ are elements of reality. They
seem to exist for any θA and θB.
This EPR-like reasoning is inconsistent. A Bell inequal-

ity is satisfied by the elements of reality, and violated by
quantum predictions. The double EPR-like supersinglet
jΨð−Þi leads to predictions that disagree with the ideas
of EPR.
Chained Bell inequalities.—The inequalities are based

on the concept of distance. Any properly defined distance

FIG. 1 (color online). Test of inequality (4) with four-mode
squeezed vacuum state. Parametric down-conversion crystal
(PDC) and polarizing beam splitter (PBS). The detectors measure
photon numbers.
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satisfies polygon inequalities. Take two stochastic variables
VðλÞ and WðλÞ, governed by a joint probability ρðλÞ.
Their “separation” can be measured by DðV;WÞ ¼R jVðλÞ −WðλÞjρðλÞdλ. This function satisfies all defining
properties of a distance DðV; VÞ ¼ 0, DðV;WÞ ¼
DðW;VÞ ≥ 0 and the triangle inequality DðV; ZÞ ≤
DðV;WÞ þDðW;ZÞ. The last property is due to the fact
that for any three numbers a; b; c one has ja − cj ≤
ja − bj þ jb − cj.
Alice and Bob choose freely between several local

settings of their polarizers, θAi
and θBj

, respectively. For
a concise notation, we denote the elements of reality

associated with the kth run of the experiment by nðkÞi ¼
nðkÞðθAi

Þ and nðkÞj ¼ nðkÞðθBj
Þ.

The triangle inequality implies polygon inequalities,
illustrated in Fig. 2. Let i; j ¼ 1;…; L. A polygon inequal-
ity for numbers representing the elements of reality takes
the form

XL
i¼1

jmðkÞ
i − nðkÞi j þ

XL−1
i¼1

jmðkÞ
iþ1 − nðkÞi j ≥ jmðkÞ

1 − nðkÞL j: ð3Þ

For averages, hjmi−njji ¼ ð1=RÞPR
k¼1 jmðkÞ

i −nðkÞj j, where
R is the number of runs, we get

XL
i¼1

hjmi − niji þ
XL−1
i¼1

hjmiþ1 − niji ≥ hjm1 − nLji: ð4Þ

Thus, we arrive at distance-based Bell inequalities (for
different chained inequalities, see [21]).
Inequality (4) also holds for local hidden variable (LHV)

approaches. If variables mi and nj depend on some hidden
parameters λ, and their “distance” equals

hjmi − njji ¼
Z

dλρhvðλÞjmiðλÞ − njðλÞj; ð5Þ

where ρhvðλÞ is a probability distribution.
Within quantum theory, in (4) we shall use as observ-

ables photon number operators a†i ai (Alice) and b†jbj
(Bob). The measurement settings by Alice and Bob will
be defined by ai ¼ cos θAi

aH þ sin θAi
aV, and bi ¼

− sin θBi
bH þ cos θBi

bV . The inequality (4) requires the
following holds:

lhs ¼
XL
i¼1

hja†i ai − b†i biji þ
XL−1
i¼1

hja†iþ1aiþ1 − b†i biji

≥ hja†1a1 − b†LbLji ¼ rhs: ð6Þ

Violations of (4) by the supersinglet Ψð−Þ.—The mea-
surements for Alice and Bob are displayed in Fig. 3. We set
θA1

¼ 0 and θB1
¼ θ ¼ π=ð4LÞ The relative angle between

the polarization settings by Alice θAi
and Bob θBi

we put as
constant, equal to θ. Each subsequent setting of Alice and
Bob changes by 2θ. Thus, the angle between θAiþ1

and θBi
is

also θ. The angle between the first Alice’s setting θA1
and

the last of Bob’s setting θBL
is set to θ0 ¼ ð2L − 1Þπ=ð4LÞ.

Because of the U ⊗ U invariance of Ψð−Þ, the quantum
predictions for counts in a and b depend only on the
relative angle, θ or θ0. Note that, for θ ¼ 0, perfect
correlations (2) between the orthogonal polarizations in
beams a and b are observed.
In the lossless case, Alice and Bob always measure

altogether, in the two outputs of local polarizers, N photons
each (we shall analyze losses later). For the settings θA1

¼ 0

and θB1
¼ θ, the probability pN

Qðn;m∣θÞ to register n
photons in Alice’s channel H and m in Bob’s channel
θ⊥B1

, denoted below as V þ θ, reads

jhψ ð−Þ
N jðjnH; ðN − nÞViajðN −mÞHþθ; mVþθibÞj2: ð7Þ

As the components jψ ð−Þ
N i do not mix up, we can consider

(6) for each component separately, as effectively we have

lhs ¼
XN
n;m¼0

jm − njð2L − 1ÞpN
Qðn;m∣θÞ

≥
XN
n;m¼0

jm − njpN
Qðn;m∣θ0Þ ¼ rhs: ð8Þ

Let us estimate the rhs of (8) for a large number of
settings L (a long chain). Then, θ0 ≈ π=2. We have π=2
in the limit L → ∞, and Bob’s H is now V. Perfect
anticorrelation is observed, m ¼ N − n; one has
pN
Qðn;N − n∣π=2Þ ¼ 1=ðN þ 1Þ. Taking into account the

FIG. 2 (color online). Polygon inequalities for distance. The
sum of the lengths of the red segments is greater than the length of
the blue segment.

FIG. 3. Measurement settings for Alice (A) and Bob (B) for
testing the distance Bell inequality (6).
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summation over n and m, the rhs grows linearly
with N.
To estimate the lhs of (8), notice that jnH; ðN − nÞVia ⊗

jðN −mÞHþθ; mVþθib is proportional to a†nH a†ðN−nÞ
V ⊗

b†ðN−mÞ
Hþθ b†mVþθj0i. Since b†Hþθ ¼ b†H cos θ þ b†V sin θ and

b†Vþθ ¼ b†V cos θ − b†H sin θ, for θ ¼ 0 the perfect singlet
correlations are recovered: pN

Qðn;m∣θ ¼ 0Þ is nonzero only
for n ¼ m, and the average of jm − nj vanishes. For θ ≠ 0,
all “new” terms in (7) are proportional to even powers of
sin θ. The “old” term proportional to cos2N θ does not
contribute to pN

Qðn ≠ m∣θÞ. Thus, the difference between
pN
Qðn ≠ m∣0Þ ¼ 0 and pN

Qðn ≠ m∣θÞ ¼ 0 is a polynomial in
sin θ with the lowest power equal to 2. As θ ¼ π=ð4LÞ,
the lowest order terms in the lhs of (8) behave as
ð2L − 1Þsin2½π=ð4LÞ� and tend to zero for large L.
Higher order terms vanish even quicker. Therefore, the
lhs approaches zero and, in the limit L → ∞, we have an
“all-versus-nothing” conflict with the prediction for the rhs.
We may define a Bell parameter for the SV state as

follows: BQ ¼ P∞
N¼0 λ

2
NB

N
Q, where B

N
Q ¼ lhs − rhs is com-

puted for the jψ ð−Þ
N i state. For L → ∞ and an odd N,

BN
Q ¼ −ð1

2
N2 þ N þ 1

2
Þ=ðN þ 1Þ and for even, BN

Q ¼
−ð1

2
N2 þ NÞ=ðN þ 1Þ (for details see the Supplemental

Material [22]). According to LHV theories, BQ is positive.
Figure 4 shows that for sufficiently large L, the values of
BQ become negative. The mean number of photons in the
SV state is 2 sinh2 Γ. The value of BQ decreases with
population, BQ ≈ −e2Γ, and in the macroscopic limit of
Γ → ∞, in the case of L → ∞, we obtain a striking
contradiction: 0 ≥ ∞.
In the case of inefficient detection, Alice and Bob

measure unequal total photon numbers. These various
components jψ ð−Þ

N i of the SV state contribute to the same
detection event. We assume that losses in each polarization
mode are independent but equal and model them using the
Bernoulli distribution with probability of success η corre-
sponding to detection efficiency. Probability pN

Qðn;m∣θÞ
in (8) is replaced with a modified one, PQðn;m∣θ; ηÞ, which
includes all events contributing to a measurement of n
photons by Alice and m by Bob with efficiency η, and the

summation over n and m extends to infinity. Figure 5
displays a numerically computed violation of (8) as a
function of gain and efficiency for the fixed number of
settings L ¼ 2. Violation for the higher gains occurs for
larger L’s.
Summary and feasibility.—We show that for an arbitrary

pump power, the four-mode SV state Ψð−Þ involving two
propagation and polarization modes, is both an approxi-
mation of two copies of the EPR state and a polarization
supersinglet. It has all invariance properties of a two-
photon singlet state, although it is a superposition of
multiphoton components. We introduce a family of chained
Bell inequalities based on the concept of distance, which
are violated by Ψð−Þ for all (nonzero) values of squeezing
(gain). Our inequalities employ straightforward local
observables: merely photon numbers at outputs of polari-
zation analyzers, which do not require auxiliary fields, or
ancillas; just beam splitting, no interferometric overlaps.
For low pump powers the inequalities do not give results
which differ much from the traditional CHSH-like chained
inequalities. However, for high powers they are robustly
violated because multiphoton emissions do not decrease the
contrast of the interference effect which defines the terms of
the inequalities (averaged moduli of differences of photon
numbers). Note, that standard correlation functions
ha†i aib†jbji, which behave as

sinh2Γcosh2Γcos2ðθAi
− θBj

Þ þ sinh4Γ;

lose their interferometric contrast for increasing Γ, even-
tually reaching the value 1=3, characteristic for thermal
fields; see, e.g., Ref. [23]. This renders CHSH-like
approaches, based on such correlations, useless. Thus,
our chained inequalities are better suited for high gain
parametric down-conversion experiments.
The “short” inequalities (8), involving 2 to 4 settings at

each side, can be useful in quantum information tasks,
cryptography, and reduction of communication complexity,

FIG. 4 (color online). The Bell parameter BQ as a function of
the number of settings L evaluated for the entangled squeezed
vacuum state. For Γ ¼ 0.8 the mean number of photons
equals 1.6.
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FIG. 5 (color online). Violation of the inequality (8) by four
mode squeezed vacuum as a function of gain and efficiency, for
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in device-independent protocols. They are violated also for
final efficiencies, Fig. 5. Note that as the PDC process now
produces entangled pairs with fidelity approaching 100%,
the main distortions in production the SV, which involves
multipair emissions, are due to losses. Thus our efficiency
analysis covers also the imperfections in the generation
of SV.
The inequalities involving large numbers of settings are

impractical, but they lead to an all-versus-nothing direct
GHZ-like refutation of EPR concepts, for states that are
close approximations of EPR states and share the basic
properties with Bohm’s singlets. Thus, the four-mode SV
emerges as a versatile state in studies of both quantum
information and foundational problems.
The SV states with mean photon number of the order of

10 are accessible in laboratories [13,24]. Violations of the
presented Bell inequalities may be soon feasible for a small
number of settings and for pump intensities in Fig. 5.
Experiments could employ the techniques of Ref. [25] and
integrated optics setups equipped with superconducting
transition-edge sensors (TESs) [26], which reach photon-
counting efficiencies near 100% and have extremely well-
resolved photon-number peaks, up to around ten photons
[27]. Therefore, the efficiency required for the chained Bell
inequality violation with the four-mode SV is, in principle,
achievable with state-of-the-art techniques. However, our
work is rather a motivation for new research, than a
blueprint for an experiment.
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