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The quasiskutterudite superconductor Sr3Rh4Sn13 features a pronounced anomaly in electrical resistivity
at T� ∼ 138 K. We show that the anomaly is caused by a second-order structural transition, which can be
tuned to 0 K by applying physical pressure and chemical pressure via the substitution of Ca for Sr. A broad
superconducting dome is centered around the structural quantum critical point. Detailed analysis of the
tuning parameter dependence of T� as well as insights from lattice dynamics calculations strongly support
the existence of a structural quantum critical point at ambient pressure when the fraction of Ca is 0.9 (i.e.,
xc ¼ 0.9). This establishes the ðCaxSr1−xÞ3Rh4Sn13 series as an important system for exploring the physics
of structural quantum criticality without the need of applying high pressures.
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Quantum criticality associated with a second-order phase
transition at zero temperature has been a fruitful concept in
the search for superconductivity. Particularly clear exam-
ples include the heavy fermion [1,2] and iron-based
systems [3–6], where superconductivity is stabilized in
the vicinity of an antiferromagnetic quantum critical point
(QCP). In addition to magnetic instabilities, structural
instabilities also have an intricate influence on the super-
conductivity. However, clean systems with a continuous
structural transition tunable by external parameters are
relatively rare, and for the few cases studied in recent
years, the structural order is found in the vicinity of
magnetic order [7], making the notion of structural quan-
tum criticality and its influence on the superconductivity
less advanced than the magnetic counterpart.
Superconducting stannides [8,9], including A3T4Sn13

systems, where A ¼ La, Sr, Ca and T ¼ Ir, Rh, have
recently been reexamined using a wide range of probes
[10–22]. Sr3Rh4Sn13, a member of this stoichiometry
family, is a strong-coupling superconductor with a
critical temperature Tc ≈ 4.7 K. The superconducting
gap function Δ is nodeless, with 2Δ=kBTc ¼ 3.87 [11].
In addition to superconductivity, the normal state of
Sr3Rh4Sn13 features another instability, which sets in at
T� ≈ 138 K. In Ca3Rh4Sn13, which is also a superconduc-
tor with Tc ¼ 7.8 K, no signature of the anomaly asso-
ciated with T� was observed. The substitution series
ðCaxSr1−xÞ3Rh4Sn13 is readily available, allowing us to
track the evolution of T� and its interplay with super-
conductivity when Ca is partially replaced by Sr,
which simulates a negative chemical pressure, as well as

when positive physical pressure is applied directly on the
crystals.
A recent investigation of the related series

ðCaxSr1−xÞ3Ir4Sn13 revealed the existence of a structural
quantum phase transition at 18 kbar in Ca3Ir4Sn13 [13].
Since Ca3Ir4Sn13 sits at the limit of the chemical pressure in
this series, physical pressure has to be applied in order to
access and study the physics of the structural quantum
phase transition, thus restricting the accessibility of many
experimental probes. In this Letter, we argue that the
ðCaxSr1−xÞ3Rh4Sn13 series is an excellent alternative for
the investigation of structural criticality. Here, we show that
T� is a second-order structural transition temperature that
can be suppressed with a suitable combination of physical
and chemical pressures. Importantly, T� can be driven to
0 K for ðCa0.9Sr0.1Þ3Rh4Sn13 (i.e., x ¼ 0.9) without apply-
ing physical pressure. In the vicinity of x ¼ 0.9, the
structural QCP, a broad superconducting dome is observed,
giving rise to a phase diagram reminiscent of cases
featuring an antiferromagnetic QCP.
Single crystals of ðCaxSr1−xÞ3Rh4Sn13 were synthesized

by the Sn flux method using similar parameters to those
described in Ref. [10]. The high pressure electrical resis-
tivity ρðTÞwas measured using a four-wire configuration in
a piston-cylinder cell with Daphne 7373 as the pressure
transmitting medium. The pressure achieved was deter-
mined using the superconducting transition of lead. The
heat capacity CpðTÞ was measured using a standard
pulse relaxation method. Both CpðTÞ and ρðTÞ were
measured in a Physical Property Measurement System
(Quantum Design). Single crystal XRD measurements
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were performed, using an Oxford Diffraction Supernova A
utilizing Mo Kα radiation and equipped with an Oxford
Cryostream Plus. Data integration and analytical absorption
corrections were performed with CRYSALIS PRO [23].
Structures were solved using direct methods and refined
against jFj2 using SHELX-97 [24] via the OLEX-2 [25]
interface. The electronic structure has been calculated using
the local density approximation. The VASP [26] code was
employed using projector-augmented wave potentials. A
plane wave cutoff of 300 eV was used and a minimum
4 × 4 × 4 k-point grid was set up, which was scaled
appropriately for supercells. The phonon spectrum was
calculated by using PHONOPY [27] in conjunction with
VASP. All calculations were nonspin polarized.
The normal state of Sr3Rh4Sn13 features a phase tran-

sition at T� ≈ 138 K, which is detectable in a wide range of
physical quantities including the heat capacity [Fig. 1(a)]
and electrical resistivity [Fig. 1(b)]. The minimum in
dρ=dT is used to define T�, as indicated in Fig. 1(b).
The measurements of both CpðTÞ and ρðTÞ have been
carried out on cooling down and warming up, at the same
sweep rates. The cooling and warming curves overlap
perfectly, showing the absence of hysteresis. In addition,
CpðTÞ near T� exhibits a lambdalike jump. These obser-
vations indicate that T� corresponds to a transition temper-
ature of a second-order or only very weakly first-order
phase transition.
Single crystal x-ray diffraction measurements at 300 K

confirmed that Sr3Rh4Sn13 adopts a Pm3̄n cubic structure,
the I phase, with a ¼ 9.80610ð18Þ Å. Below T�, additional
weak reflections are observed that are consistent with a
phase transition to a body-centered cubic structure, the I0
phase, with a lattice parameter twice that of the high
temperature phase (Sec. C of Ref. [28]). An acceptable
refinement could only be achieved in space group I4̄3d
with a ¼ 19.5714ð3Þ Å at 100 K (R1obs, wR2obs, and χ2 of
3.1%, 8.9%, and 1.1%). The structural distortion is similar
to that observed in Sr3Ir4Sn13 at 147 K [13,18], with the
bond distances in the Snð1ÞSnð2Þ12 icosahedra distorting
into four groups of three identical bond distances [see
Fig. 1(c)]. This occurs in concert with tilting of three
quarters of the RhSnð2Þ6 trigonal prisms with only those
trigonal prisms whose axes are along the (111) direction
remaining untilted. The transition temperature remains the
same on heating and cooling, consistent with the expected
second-order transition between the Pm3̄n and I4̄3d space
groups, which have a group-subgroup relationship.
Mode decomposition of the low temperature phase was

carried out using the ISODISTORT software suite [29]
by comparison with the parent high symmetry phase. It
revealed that the active q vector is (0.5, 0.5, 0) and its
symmetry equivalents. In particular, the structural
distortion appears to be primarily driven by the modes
belonging to the M2-irreducible representation, primarily
causing displacement of the Sn(2) sites along with small

movements of the strontium cations. It has previously been
shown that the transition between the primitive and body-
centered structures is linked to charge transfer between
Sn(2) and Sn(1) atoms, which increases the ionicity of the
bond between these atoms [30,31].
Having established the origin of the anomaly at T�, we

now examine its pressure dependence. We show in Fig. 2(a)
the high pressure ρðTÞ of Sr3Rh4Sn13 (x ¼ 0). T� decreases
rapidly when hydrostatic pressure is applied. Concurrently,
the superconducting transition temperature Tc, defined
using the resistive midpoint of the transition, changes only
slightly under pressure. In Ca3Rh4Sn13 (x ¼ 1), no sig-
nature of T� was detected for all pressures studied, while Tc
is higher than that in Sr3Rh4Sn13 and shows a gentle
variation with pressures (Figs. S5 and S6 of Ref. [28]).

FIG. 1 (color online). The temperature dependence of the
(a) heat capacity, (b) electrical resistivity, and (c) Sn(1)–Sn(2)
bond distances for Sr3Rh4Sn13 near T�. In (a) and (c), the closed
(open) symbols denote the data collected on cooling (warming).
In (b), the solid (broken) line is the cooling (warming) curve. All
these point to the absence of hysteresis at T�. The temperature
derivative of the electrical resistivity in (b) provides a means to
define T�.
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Both Sr3Rh4Sn13 and Ca3Rh4Sn13 adopt the Pm3̄n
structure at room temperature; the lattice constant of
ðCaxSr1−xÞ3Rh4Sn13 shrinks linearly and uniformly with
increasing calcium content x, obeying Vegard’s law
(Fig. S1 of Ref. [28]). Therefore, the substitution of Ca
for Sr simulates the effect of hydrostatic pressure, and
Ca3Rh4Sn13 can be regarded as the high pressure analogue
of Sr3Rh4Sn13. Detailed analysis of all T� and Tc data
suggests that Δx ¼ 1 corresponds to Δp ¼ 68 kbar (see
Sec. A of Ref. [28]). Placing Sr3Rh4Sn13 at −68 kbar
and Ca3Rh4Sn13 at the origin of the pressure scale, we
construct the universal phase diagram (Fig. 3), which
illustrates the interplay between the structural order and
superconductivity driven by both the physical pressure and
the chemical pressure. The universal phase diagram is
reminiscent of the cases where superconductivity is stabi-
lized on the border of magnetism (e.g., Refs. [1–6]). The
crucial difference here is that it is a structural transition that
is suppressed by the nonthermal tuning parameter. T�
extrapolates to 0 K at pc ¼ −6.8 kbar relative to
Ca3Rh4Sn13, or, equivalently, at xc ¼ 0.9. If the structural
transition remains second order, or weakly first order, a
structural QCP at xc or pc is expected. Thus, the phase
diagram of ðCaxSr1−xÞ3Rh4Sn13 features a QCP that is
accessible at ambient pressure by fine tuning the Ca
content.

When a crystalline system undergoes a second-order
displacive structural transition, the relevant phonon mode
must go soft at the transition temperature T�. The existence
of a phonon mode at Q ≠ 0 such that ωQ → 0 implies the
emergence of a new periodicity. When T� is tuned to 0 K,
the associated softening of the phonon mode occurs at 0 K.
This gives rise to additional low-lying phonon modes,
which can be excited at low temperatures. Using the
generalized Bloch-Grüneisen expression [33,34], the con-
tribution to the electrical resistivity due to phonon scatter-
ing can be written as

ΔρphðTÞ ∝
X

q

α2ðtrÞq
xqexq

ðexq − 1Þ2 ≈
X

q

α2ðtrÞq

�
kB
ℏωq

�
T;

where α2ðtrÞq is a q-dependent Fermi surface average of the
electron-phonon interaction, ωq is the phonon frequency,
and xq ¼ ℏωq=kBT. The approximation in the last part of
the expression is applicable when ℏωq ≪ kBT, i.e., the
softening of the phonon frequency relative to the thermal
energy. Therefore, the phononic contribution to the elec-
trical resistivity is linear in T when ℏωq ≪ kBT; the degree
of the contribution is enhanced with softer ωq.

FIG. 2 (color online). (a) High pressure ρðTÞ in Sr3Rh4Sn13 for
the determination of T� and Tc (inset). The pressure values
increase sequentially as indicated by the arrow, and are given by
0, 4.0, 6.0, 12.7, 14.0, 15.0, 17.3, 19.1, and 20.6 kbar. (b) Rep-
resentative ρðTÞ for the system situated at five different locations
of the universal phase diagram (see arrows in Fig. 3), spanning a
range that straddles the QCP. The dashed straight lines are guides
for the eyes [32]. (c) The normal state Cp=T is plotted against T2

for x ¼ xc ¼ 0.9 (diamond), right at the quantum critical point,
and at x ¼ 0 (square).

FIG. 3 (color online). Universal phase diagram showing the
pressure dependence of T� and Tc for ðCaxSr1−xÞ3Rh4Sn13. The
origin of the pressure scale is chosen to coincide with x ¼ 1, as
indicated by the dashed vertical line. In this representation, the
part of the phase diagram to the left of the dashed line is
accessible by varying the calcium content, whereas the part to the
right is accessible only by physical pressures. The arrows indicate
the positions in the parameter space where ρðTÞ curves are
presented in Fig. 2(b).

PRL 114, 097002 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

097002-3



Figure 2(b) shows five representative traces of ρðTÞ
whose composition and pressure values are chosen to
straddle xc ¼ 0.9 (pc ¼ −6.8 kbar), the location where
T� → 0 K, and their positions in the universal phase
diagram are indicated by the arrows in Fig. 3. Far
below xc, ρðTÞ exhibits a large curvature just above Tc.
However, at xc, a distinct T-linear resistivity is observed
over a wide temperature range (curve C). According to
our treatment in the preceding paragraph, this observation
at low temperatures suggests the existence of a very soft
phonon mode, so as to satisfy ℏωq ≪ kBT. This is con-
sistent with the scenario of a second-order structural
quantum phase transition at xc. Moving away from xc,
the curvature gradually builds up again, as evidenced
in the ρðTÞ traces labeled D and E [see also Fig. S7 of
Ref. [28] for intermediate ρðTÞ between D and E].
We can gain further insight by calculating the phonon

dispersion relation for Sr3Rh4Sn13, which is below xc,
and Ca3Rh4Sn13, which according to our experimental
results is above xc. In Fig. 4 the low energy modes of
the phonon spectrum are shown for Ca3Rh4Sn13 and
Sr3Rh4Sn13. The depicted points along the high symmetry
lines lie at coordinates Xð0.5; 0; 0Þ, Mð0.5; 0.5; 0Þ, and
Rð0.5; 0.5; 0.5Þ in the Brillouin zone corresponding to the
simple cubic lattice. While Sr3Rh4Sn13 with its larger
lattice parameter possesses imaginary mode frequencies,
indicating a lattice instability, for Ca3Rh4Sn13 these modes
have hardened to yield real frequencies. This is consistent
with the experimentally observed phase diagram, in which
Sr3Rh4Sn13 undergoes a structural transition at ∼138 K
while for Ca3Rh4Sn13 the transition is absent. However, as
highlighted by the circle in the figure, Ca3Rh4Sn13 retains a
soft mode of approximately 0.35 THz atM, the wave vector
associated with the structural transition in Sr3Rh4Sn13. This
suggests that Ca3Rh4Sn13 is near to the critical end point

for the structural phase transition, and the calculations lend
further support to our conclusion that a structural QCP is
reachable in the ðCaxSr1−xÞ3Rh4Sn13 series by tuning the
Ca content.
When a QCP located at xc is approached, the order

parameter correlation length ξ and correlation time ξτ
diverge according to ξ ∼ jx − xcj−v and ξτ ∼ ξz [6,35].
The dynamical exponent z can be determined from the
dispersion relation at xc: ω ∝ q0z. We can analyze our
system by approaching the critical concentration xc from
the quantum disordered side. The dispersion relation for
Ca3Rh4Sn13 (x > xc) around the minimum at M (see
Fig. 4) can be Taylor expanded as ω ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2q02 þ Δ2

p
,

where q0 is the wave vector measured from M and Δ is
the gap between the soft mode frequency at M and ω ¼ 0.
With the alloying of Sr, Δ decreases and it eventually
vanishes at xc, triggering a structural quantum phase
transition. At xc, the dispersion relation aroundM becomes
ω ∝ q0, analogous to an acoustic branch with slope c.
Consequently, z is unity and the effective dimension for
quantum criticality in our system deff ¼ dþ z ¼ 4, where
d is the spatial dimension [6,35].
The additional phonon branch with a linear dispersion

relation at the QCP strongly affects the low temperature
heat capacity. Analogous to Debye’s treatment, the con-
tribution of this additional branch to the heat capacity is
proportional to T3. In Fig. 2(c), we plot the normal
state Cp=T versus T2 for x ¼ 0 and x ¼ xc ¼ 0.9. The
low temperature part of the data can be described by
Cp=T ¼ γ þ βT2 (dashed lines), where γ is the coefficient
governing the electronic contribution to the heat
capacity and the slope β is related to the phonon contri-
bution due to linear ωðqÞ. While γ is more or less the
same in both compositions, β at the QCP is ∼4.6 times
larger than that at x ¼ 0, which is far away from the
QCP. This additional T3 contribution at the QCP is
consistent with the model we proposed in the preceding
paragraph.
In summary, we have established the T-p phase diagram

of ðCaxSr1−xÞ3Rh4Sn13. We show that a second-order
structural transition temperature T� can be tuned to 0 K
by a suitable combination of p and x. When T� → 0, a
linear-in-T electrical resistivity is observed, a significant T3

contribution to the heat capacity is recorded, and the
superconducting transition temperature peaks near this
pressure or composition. Lattice dynamics calculations
reveal the existence of imaginary phonon frequencies in
Sr3Rh4Sn13, indicative of structural instabilities. These
imaginary phonon mode frequencies completely disappear
in Ca3Rh4Sn13. Our combined experimental and computa-
tional effort highlights a particularly important feature of
this series, in that T� → 0 can be achieved for x ¼ 0.9
without the need of applying pressure, which opens up a
new avenue for detailed investigation of the physics of
structural quantum criticality.
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FIG. 4 (color online). Dispersion relation ωðqÞ for Sr3Rh4Sn13
and Ca3Rh4Sn13 at T ¼ 0. The circle highlights the presence of
an anomalously soft phonon mode in Ca3Rh4Sn13 near M. The
negative part of the frequency axis denotes imaginary phonon
mode frequencies.
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