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We consider a low Tc metallic superconductor weakly coupled to the soft fluctuations associated with
proximity to a nematic quantum critical point (NQCP). We show that (1) a BCS-Eliashberg treatment
remains valid outside of a parametrically narrow interval about the NQCP, (2) the symmetry of the
superconducting state (d wave, s wave, p wave) is typically determined by the noncritical interactions, but
Tc is enhanced by the nematic fluctuations in all channels, and (3) in 2D, this enhancement grows upon
approach to criticality up to the point at which the weak coupling approach breaks down, but in 3D, the
enhancement is much weaker.
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In both the hole-doped cuprate [1–9] and Fe-based
[10–13] high temperature superconductors, there is evi-
dence of a nematic quantum critical point (associated with
the breaking of point group symmetry) at a critical doping,
xc, which is close to the “optimal doping” at which the
superconducting Tc is maximal. These materials are com-
plicated, strongly coupled systems with many intertwined
ordering tendencies [14–17] in which quenched disorder
plays a role in some aspects of the physics [6,18].
Thus, motivated by experiments, but without pretense

that the theory is directly applicable to these materials,
we study the situation in which a low Tc metallic super-
conductor is weakly coupled, with coupling constant α, to
collective modes representing the soft fluctuations of a
system in the neighborhood of a nematic quantum critical
point (NQCP). Here, the effective interaction in the Cooper
channel consists of the sum of a nonretarded, noncritical
piece Vð0Þ, and a critical piece, VðindÞ, which is increasingly
peaked at small momentum and energy transfer the closer
one approaches to the NQCP. The peak width as a function
of wave number and frequency is, respectively, κ ≡ ξ−1 and
Ω ∼ ξ−z, where ξ is the nematic correlation length, z is
the dynamical critical exponent, and where, on the ordered
side of the NQCP, the nematic transition temperature is
comparable to Ω. For small α, outside of a parametrically
narrow regime about criticality, the induced interactions
among the electrons can be computed without needing to
worry about the feedback effect of the fermions on the
collective modes.
We thus gain analytic control of the problem in a

parametrically broad quantum critical regime, though not
in a small window of metallic quantum criticality, (see
Fig. 1). In the regime of control, VðindÞ is weak (Tc ≪ Ω)
and so can be treated in the context of BCS-Eliashberg
theory, or equivalently [19,20], perturbative renormaliza-
tion group (RG). The nematic modes play a role similar
to that of phonons in a conventional superconductor, with

the difference that VðindÞ is strongly k dependent in such
a way that it is attractive in all pairing channels, and
so enhances Tc in whatever channel is favored by the
noncritical interactions. The enhancement grows rapidly
upon approach to criticality in 2D, and somewhat more
slowly in 3D.
Model.—We consider a system described by the

Euclidean effective action
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FIG. 1 (color online). (a) Gap function vs cos kx − cos ky along
the Fermi surface, obtained by solving Eq. (8) in 2D. The
noncritical interaction Γð0Þ is taken to favor a d-wave gap with
form factor cos kx − cos ky (dotted-dashed line) and has a strength
such that λð0Þ ¼ 10α2 ≈ 0.05. The solid and dashed lines are,
respectively, for kFξ ¼ 10 (“weak enhancement”) and kFξ ¼ 100
(“strong enhancement”). Inset: Cartoon of the Fermi surface of
the cuprates; the star and squares indicate, respectively, a “cold
spot” of the nematic dx2−y2 form factor where ΓðindÞ vanishes by
symmetry, and “optimal points” k̂opt where ΓðindÞ is strongest.
(b) Schematic phase diagram. The solid line shows the nematic
transition temperature. Outside of the central shaded region, the
quantum critical regime can be described in terms of a Wilson-
Fisher fixed point weakly coupled to a Fermi liquid. Within the
shaded region, this picture breaks down, and a different descrip-
tion (possibly in terms of a different, strongly coupled fixed
point) is needed. Tc is much smaller than any temperature scales
pictured, but varies dramatically. The dashed-dotted line shows
the behavior of λ, the pairing eigenvalue [Eq. (7)].
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S½ϕ; ψ̄ ;ψ � ¼ Sel½ψ̄ ;ψ � þ Snem½ϕ� þ Sint½ϕ; ψ̄ ;ψ �; ð1Þ

where Sel is the action of itinerant electrons with an
assumed weak interaction in the Cooper channel,

Vð0Þð~k; ~k0Þ, Snem is the action of the nearly critical nematic
mode ϕ, and

Sint ¼ α

Z
dτ

d~k
ð2πÞd

d~q
ð2πÞd fð~q;

~kÞϕ~qψ̄ ~kþ~q=2ψ ~k−~q=2; ð2Þ

where we have suppressed the spin index on the fermion
fields. We consider Ising nematic order of dx2−y2 symmetry
in a system with tetragonal symmetry, which implies that

fð~q; ~kÞ is odd under rotation by π=2 and under reflection
through ð1;�1; 0Þ mirror planes, but even under inversion,
time reversal, and reflection through (1,0,0) and (0,1,0)
mirror planes. Since the physics near criticality is domi-
nated by long-wavelength nematic fluctuations, the cou-
pling constant can be replaced by its value at j~qj → 0,

fð~0; ~kÞ≡ fð~kÞ ∼ ½cosðkxÞ − cosðkyÞ�. (Note: this form fac-
tor reflects the symmetry of the nematic order, and is
unrelated to the symmetry of the pair wave function.)
This effective action already represents a coarse-grained

version of the microscopic physics. In particular, since the
nematic phase breaks the point-group symmetry of
the crystal, ϕ generally involves collective motion of both
the electron fluid and the lattice degrees of freedom, with
relative weights that depend on microscopic details. In the
absence of coupling to low energy electronic degrees of
freedom (α ¼ 0), we suppose that, as a function of an
externally controlled parameter x (which could be doping
concentration, pressure, etc.), there is a quantum phase
transition from a nematic phase for x < xc, in which ϕ is
condensed, to an isotropic phase for x > xc. Thus, the
dynamics of ϕ are characterized by dþ 1 dimensional Ising
exponents with z ¼ 1.
In the fermion sector, we introduce a cutoff, W, defined

as the energy scale of the noncritical portion of the electron-
electron interaction, Vð0Þ. For instance, if Vð0Þ is mediated
by short-range spin fluctuations [21], the cutoff energy is
proportional to the exchange coupling J. Restricting
fermion energies to lie below W justifies both neglecting
all irrelevant couplings (other than those in the Cooper
channel) and treating the remaining interactions as non-
retarded. (More generally, we should include Fermi liquid
parameters in Sel, but we will neglect these for simplicity.)
Effective interactions.—In the small α limit, beyond a

parametrically narrow interval about criticality, one can
integrate out the nematic modes perturbatively to produce
an effective action for the electrons alone. In the disordered
phase (x > xc), the leading order effect is an additive
four-fermion term proportional to α2χð~q;ωÞ, which, in the
Cooper channel, results in the net interaction

Vð~kþ; ~k−;ωÞ ¼ Vð0Þð~kþ; ~k−Þ −
1

4
α2jfð~q; ~kÞj2χð~q;ωÞ; ð3Þ

where ~k� ¼ ~k� ~q=2 and χð~q;ωÞ is the nematic suscep-

tibility, which is peaked at ~q ¼ ~0 and ω ¼ 0. With the usual

definition of the critical exponents, χð~0; 0Þ≡ χ0 diverges
as δx≡ ðx − xcÞ → 0 as χ0 ∼ jδxj−γ, and falls as a
function of increasing j~qj and jωj as χð~q;ωÞ ∼ χ0½Ω2=
ðc2q2 þ ω2 þ Ω2Þ�1−η=2. The ~q-space width of χð~q; 0Þ
is, thus, κ ¼ ξ−1 ∼Ω1=z ∼ jδxjν. (From scaling, 1 − η=2 ¼
γ=2ν.) The Ising critical exponents are fν; η; γg ¼
f1=2; 0; 1g for d ¼ 3, and fν; η; γg ≈ f0.63; 0.03; 1.23g
for d ¼ 2 [22].
There are also other (mostly irrelevant) four-fermion

interactions generated at order α2, but these become
appreciable only where the assumptions of our BCS
approach break down, so we ignore them here [23]. On
the other hand, they can give rise to observable effects,
notably corrections to Fermi liquid theory such as quasi-
particle mass renormalization, which, while small in the
perturbative regime, diverges as a power law approaching
the NQCP.
We have also neglected the effects of higher order terms

in the effective action, generated at order α4 and beyond.
Among others things, these terms include the backaction
of the fermions on the quantum critical dynamics of the
nematic modes, i.e., Landau damping. These effect are
unimportant so long as 1 ≫ α2χ0ρðEFÞ where ρðEFÞ is the
density of states at the Fermi energy, i.e., for jδxj ≫ α2=γ.
When this inequality is violated, the apparent critical
exponents and critical amplitudes that characterize the
nematic fluctuations may deviate from their dþ 1 dimen-
sional Ising values at the decoupled NQCP.
As in the electron-phonon problem, we adopt a pertur-

bative RG approach to account for the retarded nature of
VðindÞ [20]. We define dimensionless vertex operators in
terms of the interactions and the Fermi velocities, vk̂ (where
k̂ denotes a point on the Fermi surface). We then integrate
out the Fermionic modes with frequencies between W and
Ω. This results in a new effective action with a high energy
cutoff set by Ω and a renormalized, but now instantaneous,
vertex in the Cooper channel

Γ ¼ Γ� þ ΓðindÞ; ð4Þ

where the the noncritical (instantaneous) piece of the vertex
operator has been replaced by

Γ� ¼ Γð0Þ½1þ Γð0Þ logðW=ΩÞ�−1; ð5Þ

where Γð0Þ
k̂;k̂0

≡ Vð~k; ~k0Þ= ffiffiffiffiffiffiffiffiffiffi
vk̂vk̂0

p
. However, the induced inter-

action is unaffected by this process, so
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ΓðindÞ
~k;~k0

≈ −
α2

4

����f
�~kþ ~k0

2

�����
2 χð~k − ~k0; 0Þffiffiffiffiffiffiffiffiffiffi

vk̂vk̂0
p : ð6Þ

This reflects the familiar feature of BCS-Eliashberg theory
that only the instantaneous interaction gets renormalized by
the high energy fermionic modes.
In addition to being highly peaked at small momentum

transfer, i.e., small j~k − ~k0j, ΓðindÞ has a significant depend-
ence on the position of k̂ and k̂0 on the Fermi surface: fðk̂Þ
vanishes at symmetry related “cold-spots” [24] on the
Fermi surface, jkxj ¼ jkyj, and takes on its maximal value,
fðk̂optÞj ¼ 1, at a set of “optimal pairing points,” k̂opt. For
example, for a cupratelike Fermi surface, these points
correspond to the “antinodal points” on the Fermi surface,
as illustrated in Fig. 1(a). Not surprisingly, we will find that

the strongest pairing occurs for ~k near k̂opt.
Solution of the gap equation.—We are now left with the

problem of fermions with energies within Ω of the Fermi
surface, interacting by an instantaneous interaction vertex

Γ—i.e., the BCS problem with a ~k dependent interaction.
Thus, as usual, the superconducting Tc (so long as the
weak-coupling condition Tc ≪ Ω is satisfied) is deter-
mined as

Tc ∼Ω exp½−1=λ�; ð7Þ
where, in terms of the eigenstates of Γ,

Z
dk̂0Γk̂;k̂0ϕ

ðaÞ
k̂0

¼ −λaϕ
ðaÞ
k̂
; ð8Þ

and λ is the largest positive value of λa.
As a function of x, Γð0Þ is smooth and analytic (neglect-

ing small corrections in the ordered state which we shall

discuss), but ΓðindÞ
k̂;k̂

grows in magnitude upon approach to

criticality in proportion to α2χ0ρðEFÞ ∼ α2jδxj−γ . However,
as we shall see, the pair wave function ϕ in Eq. (8) is always

a more slowly varying function of k̂0 than is ΓðindÞ
k̂;k̂0

, so the

contribution of the induced interactions to λ always
involves the integrated weight

λðindÞ ≡ α2

4

Z
dk̂v−1

k̂
χðk̂; 0Þ ∼ α2ρðEFÞχ0ðkFξÞ1−d; ð9Þ

where kF is the Fermi wave vector. Therefore, in d ¼ 2,
λðindÞ grows in proportion to α2jδxjν−γ, so the weak coupling
BCS approach is valid only for jδxj > Oðα2=ðγ−νÞÞ.
However, in d ¼ 3, γ − 2ν ¼ 0 so λðindÞ grows only
logarithmically, λðindÞ ∼ −α2 log jδxj. Our principal remain-
ing task is to analyze the eigenvalue problem in Eq. (8).
This is readily done numerically, given an explicit form of
Γ. We begin, however, by discussing certain limiting cases
which can be approximately analyzed analytically.

Regime of “weak enhancement.”—The most straightfor-
ward regime to analyze is that in which the coupling to the
nematic mode makes a subdominant contribution to the
pairing interaction, i.e., where ΓðindÞ is small compared
to Γ�. Such a regime always exists sufficiently far from
criticality provided that λð0Þ ≫ α2, (where λð0Þ is the largest
positive eigenvalue of −Γð0Þ), a condition we, henceforth,
assume.
In this regime, the form of the gap function is largely

determined by the noncritical interactions, but Tc is
enhanced (possibly by a large factor) by coupling to the
nematic modes. This enhancement can be estimated using
first order perturbation theory

λa ¼ λ�a þ δλðindÞa ;

λ�a ¼ λð0Þa f1 − λð0Þa log½W=Ω�g−1;

δλðindÞa ¼ −
Z

dk̂dk̂0ðϕða;0Þ
k̂

Þ�ΓðindÞ
k̂;k̂0

ϕða;0Þ
k̂0

; ð10Þ

where ϕða;0Þ and λð0Þa are, respectively, a (normalized)
eigenstate and eigenvalue of Γð0Þ. In the neighborhood
of the NQCP, ΓðindÞ is peaked about small jk̂ − k̂0j; hence,

δλðindÞa ≈ λðindÞ
Z

dk̂jfð~kÞj2jϕða;0Þ
k̂

j2: ð11Þ

The degree of the enhancement of pairing, thus, is larger the

more the gap function is peaked near ~kopt. This result is
valid so long as 1 ≫ λð0Þ ≫ λðindÞ. Even so, the enhance-

ment of Tc ∼ Tð0Þ
c exp½δλðindÞ=ðλð0ÞÞ2� can be large if

δλðindÞ ≫ ½λð0Þ�2, and grows larger the closer one
approaches to the NQCP.
We can also estimate the changes to the form of the gap

function, Δ~k, perturbatively in powers of ΓðindÞ. The gap
function is proportional to the pair wave function,
Δk̂ ∝ ϕk̂

ffiffiffiffiffi
vk̂

p
. The leading correction to the pair wave

function is given by

ϕk̂ ≈ ϕð0Þ
k̂

�
1þ

�
δλðindÞ

λð0Þ

� jfð~kÞj2 − jfj2
jfj2

�
; ð12Þ

where jfj2 is the suitably weighted average of jfð~kÞj2 over
the Fermi surface [25]. As a result, the form of the gap
function is little affected by the nematic fluctuations near

the cold spots where fð~kÞ vanishes but is enhanced far from
them. For example, if Δð0Þ

k̂
has the simplest d-wave form,

Δð0Þ
k̂

∝ ½cosðkxÞ − cosðkyÞ�, the leading effect of the nem-
atic fluctuations from Eq. (12) is to admix an increasing
component proportional to ðδλðindÞ=λÞ½cosðkxÞ − cosðkyÞ�3,
as seen in Fig. 1(b). In addition, as derived in the
Supplemental Material [26], the gap is renormalized by
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exp½δλðindÞ=ðλð0ÞÞ2� (i.e., the same enhancement factor as
Tc) compared to its α ¼ 0 value, but retains a BCS-like T
dependence.
Regime of “strong enhancement.”—In 2D, since λðindÞ

grows rapidly with decreasing jδxj, there is a crossover to a
regime [43] in which λðindÞ ≫ λ�. In 3D, such a regime is
not generically encountered where our approximations are
controlled, so we specialize to 2D for the present dis-
cussion. So long as λðindÞ ≪ 1, weak coupling BCS theory
still applies, but now the pair wave function is dominantly
determined by ΓðindÞ, while the effects of Γ� can, in turn, be
computed perturbatively. With the cuprates in mind, as
illustrated in Fig. 1(a), we consider a single large closed
Fermi surface with four cold spots along the zone diago-
nals, jkxj ¼ jkyj, and four optimal points at k̂opt ¼ qx̂þ πŷ
and symmetry related points, although the discussion is
readily generalized to more complex Fermi surfaces.
The asymptotic properties of the eigenvalues and eigen-

states of ΓðindÞ can be derived analytically, as shown
explicitly in the Supplemental Material [26]. The leading
eigenstates are peaked about the positions k̂opt with an
extent in momentum space ~κ ∼ kFðκ=kFÞw, where
w ¼ ð1 − ηÞ=ð3 − ηÞ ≈ 1=3. Since w < 1, the eigenstates
of ΓðindÞ vary on a parametrically larger momentum scale
than ΓðindÞ itself, as previously stated.
Since both κ=kF and ~κ=kF ≪ 1, to a first approximation,

the relative phase of ϕk̂ in the neighborhood of the four
optimal points is unimportant, and the eigenfunctions are
fourfold degenerate. This degeneracy is lifted by the large
momentum transfer portions of Γ: The contribution from
ΓðindÞ is proportional to α2ð~κ=kFÞ, which is parametrically
smaller than δλ� ∼ λ�ð~κ=kFÞ, the perturbative eigenvalue
shift produced by Γ�. Accordingly, the four leading
eigenvalues are λa ≈ λðindÞ þ gaλ�ð~κ=kFÞ where jgaj ∼ 1
depends on the relative phase of the gap function at the
different optimal points. Even where the noncritical inter-
actions make a small contribution to the pairing energy,
they still determine the relative phase of the pair wave
function at the different optimal points and, hence, the
symmetry of the superconducting state.
For a given symmetry, the splitting between the

largest and next-to-largest eigenvalue is of order
λðindÞð~κ=kFÞ2 ≪ λðindÞ. Within the strong enhancement
regime, there are several subregimes depending on the
size of this splitting relative to ½λðindÞ�2 and to δλ�. We defer
discussion of subregimes to a later paper, but note two
salient limits, both within the strong enhancement regime.
(1) Sufficiently far from criticality, the form of the gap
function at all temperatures below Tc is determined by the
solution of Eq. (8); even the eccentric shape of the gap
function [shown in Fig. 1(b)] results in only modest
enhancement of jΔmaxðT ¼ 0Þj=Tc. (2) Sufficiently close
to criticality, the form of the gap function becomes strongly
temperature dependent. In particular, the gap function

becomes less strongly peaked at k̂opt (~κ increases) with
decreasing T. In addition, beyond mean field theory, the
near-degeneracy among different symmetry channels
within the strong enhancement regime leads to a new class
of fluctuations involving the relative phase of the order
parameter on different portions of the Fermi surface, as
previously explored in Ref. [44].
Approaching the NQCP from the ordered phase.—Until

now, we have considered the approach to criticality from
the disordered side. Unlike the case of an antiferromagnetic
quantum critical point [45], in which the opening of a gap
on the ordered side of the transition results in a strong
suppression of superconductivity, in the case of a NQCP,
the physics is largely similar when approached from the
ordered side. The major difference is in band structure,
i.e., the distortion of the Fermi surface by an amount
δkF ≡ kF;x − kF;y ∝ αkFhϕi ∼ αjδxjβ. ΓðindÞ is qualitatively
affected, because, under orthorhombic symmetry, there are
now only two fermi surface positions k̂opt of optimal
pairing rather than four. The leading eigenstates of ΓðindÞ
consist of a singlet state of extended s-wave (“sþ d”)
symmetry and a triplet state of either px or py symmetry.
The distortion of the Fermi surface also alters the

eigenvalues of both Γ� and ΓðindÞ by corrections in powers
of δkF, but these corrections are negligible near criticality.
The major difference between the ordered and disordered
sides comes through the critical amplitude ratio for the
quantity χ0ξ

1−d. This is a universal number of order one
associated with the decoupled NQCP, and gives the ratio of
λðindÞ on the two sides of the transition. It is greater than one
for d ¼ 2 and equal to one for d ¼ 3 [22], implying that, for
fixed jδxj, Tc is greater on the disordered side in d ¼ 2 and
comparable on both sides in d ¼ 3.
Relation to previous work.—The importance of the form

factor of the coupling between the electrons and the
quantum critical modes has been explored in the context
of intra-unit-cell orbital current antiferromagnetism in
Ref. [46]. However, there the collective modes were

assumed to have an essential ~k independent susceptibility.
The effects on Fermi liquids of boson-mediated interactions
with strong forward scattering have been treated exten-
sively in various related contexts [47–53].
We were also inspired by two sets of studies

which address superconducting instabilities at a NQCP,
Refs. [54–56]. Both address the issue of superconducting
pairing asymptotically close to criticality, which is the
regime we have avoided in the present approach. In this
regime, the different fields are intrinsically strongly
coupled to each other. Thus, in order to obtain theoretical
control of the problem, both works involve large N
extensions of the model. References [54] and [55] intro-
duce an artificially large number NF of fermion flavors and
a much larger number of boson flavors, NB ¼ ðNFÞ2; no
pairing tendency is found to leading order in 1=NB for
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d ≤ 3. Reference [56] treats d ¼ 2 andNB ¼ 1, but extends
the model by introducing both a large NF and a nonlocal
interaction characterized by an exponent, ϵ, assumed small
(the physically relevant limit is NF ¼ 2, NB ¼ 1, and
ϵ ¼ 1). In contrast to the results of Ref. [55], they conclude
that Tc at criticality is proportional to a power of the
coupling constant, which is what we would find were we to
extrapolate our results to where λðindÞ ∼ 1.
Relation to experiment.—The present results provide a

rationale to associate the anomalous stability [7,8] of the
superconducting dome in near-optimally doped YBCO in
high magnetic fields with the proximity of a putative NQCP
at doped hole concentration x ≈ 0.18. The simple d-wave
(nearly cos kx − cos ky) character of the pairing around this
doping, at least in the related material Bi-2212 [57], then
suggests that nematic fluctuations play a subdominant role,
enhancing a broader tendency to d-wave pairing (presum-
ably associated with noncritical magnetic fluctuations). The
fact that recent evidence indicates that a NQCP occurs at
near-optimal doping in some Fe-based superconductors
[13,58,59] is further evidence that such enhancement
may be a more general feature of high temperature super-
conductivity. Moreover, the much stronger enhancement
of Tc that arises near a NQCP in 2D may provide some
insight as to why Tc is considerably enhanced in single
layer films of FeSe [53,60,61].
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Note added.—Recently, we received a paper by Maier and
Scalapino [62] reporting a more microscopically realistic
study of the enhancement of Tc by nematic fluctuations—
the conclusions are complementary and in broad agreement
with the present results.
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