
Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

Yi-Hsin Liu,1 Fan Guo,2 William Daughton,2 Hui Li,2 and Michael Hesse1
1NASA-Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 12 October 2014; published 3 March 2015)

Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic
reconnection in electron-positron plasmas from the nonrelativistic to ultrarelativistic limit. In the
antiparallel configuration, the inflow speed increases with the upstream magnetization parameter σ and
approaches the speed of light when σ > Oð100Þ, leading to an enhanced reconnection rate. In all regimes,
the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition
at the x line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction
of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the
diffusion region, modified by the compression factor of proper density, remains ∼0.1 in both the
nonrelativistic and relativistic limits.
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Introduction.—Magnetic reconnection is a process that
changes the topology of magnetic fields and often leads to
an explosive release of magnetic energy in nature. It is
thought to play a key role in many energetic phenomena in
space, laboratory, and astrophysical plasmas [1]. In recent
years, relativistic reconnection has attracted increased
attention for its potential of dissipating the magnetic energy
and producing high-energy cosmic rays and emissions in
magnetically dominated astrophysical systems [2] such as
pulsar winds [3–5], gamma-ray bursts [6–8] and jets from
active galactic nuclei [9–11]. However, many of the key
properties of magnetic reconnection in the relativistic
regime remain poorly understood. While early work found
the rate of relativistic magnetic reconnection may increase
compared to the nonrelativistic case due to the enhanced
inflow arising from the Lorentz contraction of plasma
passing through the diffusion region [12,13], it was later
pointed out that within a steady-state Sweet-Parker model
[14,15] the thermal pressure within the current sheet will
constrain the outflow to mildly relativistic conditions where
the Lorentz contraction is negligible [16], and a relativistic
inflow is therefore impossible. Recently, the role of temper-
ature anisotropy [17], inflow plasma pressure [18], two-
fluid effects [18], inertia effects [19], and mass ratio [20]
have been considered. All existing theories are generaliza-
tions of the steady-state Sweet-Parker or Petschek-type [21]
models, which do not account for the mechanism that
localizes the diffusion region and determines the recon-
nection rate in collisionless plasmas. Meanwhile, a range of
reconnection rates are reported in computational works
with different simulation models and normalization defi-
nitions [18,20,22–25]. However, the scaling of the rate has
yet to be determined and the kinetic physics of the diffusion
region is poorly understood in the relativistic limit.
In this work, a series of two-dimensional (2D) full

particle-in-cell simulations have been performed to

understand the properties of reconnection in the magneti-
cally dominated regime. It has been argued that electron-
positron pairs are relevant in highly energetic astrophysical
environments such as pulsar winds [4,26] and extragalactic
jets [27]; hence, in this Letter we limit our study to the mass
ratio mi=me ¼ 1. The magnetization parameter can be
defined as the ratio of the magnetic energy density to
the plasma energy density, σ ≡ B2=ð4πwÞ with enthalpy
w ¼ 2n0mc2 þ ½Γ=ðΓ − 1Þ�P0. Here, Γ is the ratio of
specific heats and P0 ≡ n0ðTe

0 þ Tp
0Þ is the plasma thermal

pressure in the rest frame. The shear Alfvén speed is VA ¼
c½σ=ð1þ σÞ�1=2 [18,28–30]. In this Letter, the primed
quantities are measured in the fluid rest (proper) frame,
while the unprimed quantities are measured in the simu-
lation frame unless otherwise specified. As pointed out in
Ref. [16], if a simple pressure balance P0 ∼ B2=8π is
satisfied across a steady-state Sweet-Parker layer, this will
constrain the effective σ ∼Oð1Þ, and thus restrict the inflow
speed V in ≪ c. However, we demonstrate the development
of relativistic inflows when the upstream σ > Oð100Þ (for
the first time) in fully kinetic simulations. A simple model
based on the underlying idea of Blackman and Field [12] is
presented to explain the scaling of the inflow speed and
normalized reconnection rate. It is well known that the
normalized collisionless reconnection rate R ¼ V in=VAx ∼
0.1 in the nonrelativistic limit can be estimated by the
aspect ratio of the diffusion region, but the precise physics
that determines this value remains mysterious [31]. Here,
VAx is the Alfvén wave velocity in the outflow direction.
Interestingly, the simulation results in this study suggest
that this aspect ratio (modified by the compression factor
of proper density at the inflow and outflow) of ∼0.1
persists in the relativistic regime. In addition, we analyze
the relativistic generalization of Ohm’s law [32], and
identify the importance of the pressure tensor and the
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time derivative of the inertial term in breaking the frozen-
in condition.
Simulation setup.—The majority of simulations in this

Letter start from a relativistic Harris sheet [22,33–35]. The
initial magnetic field B ¼ B0tanhðz=λÞx̂þ Bgŷ corre-
sponds to a layer of half thickness λ with a shear angle
ϕ ¼ 2tan−1ðB0=BgÞ. Each species has a distribution fh ∝
sech2ðz=λÞexp½−γdðγLmc2 þmVduyÞ=T 0� in the simula-
tion frame, which is a component with a peak density
n00 and temperature T 0 boosted by a drift velocity �Vd in
the y direction for positrons and electrons, respectively.
Here, u ¼ γLv is the spacelike components of the
4-velocity, γL ¼ 1=½1 − ðv=cÞ2�1=2 is the Lorentz factor
of a particle, and γd ≡ 1=½1 − ðVd=cÞ2�1=2. The drift veloc-
ity is determined by Ampére’s law cB0=ð4πλÞ ¼ 2eγdn00Vd.
The temperature is determined by the pressure balance
B2
0=ð8πÞ ¼ 2n00T

0. The resulting density in the simulation
frame is n0 ¼ γdn00. In addition, a nondrifting background
component fb ∝ expð−γLmc2=TbÞ with a uniform density
nb is included. The simulations are performed using VPIC
[36], which solves the fully relativistic dynamics of
particles and electromagnetic fields. Densities are normal-
ized by the initial background density nb, time is normal-
ized by the plasma frequency ωpe ≡ ð4πnbe2=meÞ1=2,
velocities are normalized by the light speed c, and spatial
scales are normalized by the inertia length de ≡ c=ωpe.
Although commonly used, the relativistic Harris sheet may
not be generic. To test the sensitivity of our results
to the initial sheet equilibrium, a force-free configuration
[25,37] was also included, with magnetic profile
B ¼ B0tanhðz=λÞx̂ þ ½B2

g þ B2
0sechðz=λÞ�1=2ŷ, and uni-

form density and temperature. Particles in the central sheet
have a net drift Vp ¼ −Ve to satisfy Ampére’s law. All
simulations use 100–200 particles per cell for each species
(Supplemental Material D [38] shows a convergence
study). The boundary conditions are periodic in the x
direction, while in the z direction the boundary conditions
are conducting for fields and reflecting for particles. A
localized perturbation with amplitude Bz ¼ 0.03B0 is used
to induce a dominant x line near the center of the simulation
domain. The simulation parameters for the various runs
considered in this Letter are summarized in Table I. Our
primary focus in the following section is the case Harris-4,
which illustrates the dynamics in the transition to the limit
with relativistic inflows (i.e., V in ≈ c). The domain size is
Lx × Lz ¼ 384de × 384de with 3072 × 6144 cells. The
half thickness of the initial sheet is λ ¼ de, nb ¼ n00,
Tb=mc2 ¼ 0.5, Bg ¼ 0, and ωpe=Ωce ¼ 0.05 where Ωce ≡
eB0=ðmecÞ is the cyclotron frequency. The upstream
magnetization parameter based on the reconnecting
component is σx ≡ B2

0=ð4πwÞ ¼ ðΩce=ωpeÞ2=ð2f1þ
½Γ=ðΓ − 1Þ�ðTb=mc2ÞgÞ, which is 88.9 with Γ ¼ 5=3. For
cases with Tb=mc2 > 1 in Table I, we use Γ ¼ 4=3 [39,40].
Simulation results.—Figure 1(a) shows the structure of

the current sheet in the nonlinear stage, where the current

density concentrates within a layer with a half thickness
∼de. This thickness appears to be independent of the initial
sheet thickness, and scales with the inertial length based
on the asymptotic background density (nb). As shown in
Fig. 1(b), the outflow velocity approaches ∼c, while in
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FIG. 1 (color online). Results from case Harris-4
(σ ¼ σz ¼ 88.9) during the fully nonlinear phase at 566.4=ωpe
showing (a) the electron out-of-plane speed Vey, (b) the outflow
speed Vex with cut at z ¼ 0, (c) the inflow speed Vez with cut at
z ¼ −3.5de, and (d) a closeup showing the nonideal electric field
Ey þ ðVe × BÞy inside the green-dashed box depicted in (c). The
nonideal electric field is positive in between the horizontal white
curves. Black contours are flux surfaces in (a)–(d).

TABLE I. Parameters of runs.

Harris 1 2 3 4 5 6 7 8

Bg=B0 0 0 0 0 0 0.2 0.5 1
nb=n00 1 0.25 1 1 1 1 1 1
Tb=mc2 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5
ωpe=Ωce 0.1 0.05 0.1 0.05 0.02 0.05 0.05 0.05
σx 4.5 18.2 22.2 88.9 555.6 88.9 88.9 88.9
Time × ωpe

a 200 100 250 500 1000 400 350 300

Force free 1 2 3 4 5 6 7

Bg=B0 0 0 0 0 0 0 0
Tb=mc2 0.35 0.36 0.36 0.36 0.36 0.36 0.36
ωpe=Ωce 1.6 0.8 0.4 0.2 0.1 0.05 0.025
σx 0.1 0.4 1.6 6.6 26.3 105.3 421
aTime when V in reaches a steady high value.
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Fig. 1(c) the peak inflow speed is ∼0.65c. Note that these
relativistic inflows also penetrate deeply across the mag-
netic separatrix into the de-scale sheet in the downstream
region (jxj ∼ 50de). In addition, the simulation shows a
rapid growth of secondary tearing modes, not only around
the major x line, but also along the concentrated current
sheet that extends into the outflow exhausts. Interestingly,
the secondary tearing mode appears considerably shorter
spatially in comparison with those in the nonrelativistic
regime. As shown in the blowup [Fig. 1(d)], a magnetic
island at ðx ∼ −2de; z ¼ 0Þ is immersed inside the region
where the frozen-in condition is broken, and it has a size
∼3de × 2de, implying that the secondary tearing mode
grows for wave vectors kxδ̄ > 1. Here, δ̄ is the half
thickness of the intense nonlinear current layer. In contrast,
the initial tearing mode based on the relativistic Harris
equilibrium is still constrained by kxλ < 1 (i.e., from the
relativistic energy principle) [41], as in the nonrelativistic
limit. A temperature anisotropy [42,43] or the velocity
shear associated with the outflow jet [44–46] may change
the stability criterion; however, to resolve this issue in the
relativistic regime is beyond the scope of this Letter.
Figure 1(d) shows that the nonideal electric field is also
concentrated in a region jzj < de. However, the frozen-in
condition starts to fail inside a wider layer in between the
horizontal white curves, which may be due to a larger
effective inertial scale based on a smaller density at jzj≳ de
[see the density cut in Fig. 2(a)]. Figure 2(a) shows that the
inflow velocity Vez reaches its maximum ∼0.65c at the
location where the frozen-in condition starts to fail [i.e.,
marked by the green circle on the Ey þ ðVe ×BÞy curve].

The profile of Vez is rather flat in between this location and
z ¼ de. Motivated by this observation, we use the local
magnetic field Bx;u at this location (z ∼ 3.5de) to normalize
the reconnection electric field Ey, and the normalized
electric field traces the evolution of the peak inflow velocity
well [Fig. 2(b)], as expected. Since in this relativistic
regime VAx ≈ c, these two quantities are equivalent mea-
surements of the normalized reconnection rate as discussed
in the following section. The original peak density at the
center of the sheet is n0 þ nb ¼ γd þ 1 ≈ 11. This peak
density drops significantly from 11 to ∼2 and the density
along the symmetry line (z ¼ 0) remains∼2–4, except inside
secondary islands. The density ratio between the region
immediately upstream to the x line is ∼2.5=0.3 ¼ 8.3.
These numbers will be used to estimate the compression
factor in the following section. Per Ampeŕe’s law, the density
changes inside this de-scale layer require a reduction of the
local magnetic field since the motion of the current carrier is
limited by the speed of light [47].
To examine the mechanism of flux breaking, we employ

the relativistic generalization of Ohm’s law Eþ Ve ×Bþ
ð1=eneÞ∇ · P

↔

e þ ðme=eÞð∂tUe þ Ve ·∇UeÞ ¼ 0. Here,
U≡ ð1=nÞ R d3uuf, and the fluid velocity is V≡
ð1=nÞ R d3uvf. The pressure tensor P

↔ ≡ R
d3uvuf −

nVU defined in this manner reduces to the standard
definition in the nonrelativistic regime [32]. Each term
along the vertical cut in Fig. 1(d) is plotted in Fig. 2(c).

There are strong oscillations in both ∇ · P
↔

e and Ve ·∇Ue,
which largely cancel each other. In comparison, the
magnitude of the nonideal electric field Ey þ ðVe ×BÞy
is much smaller. In Fig. 2(d), we examine the region around
the neutral point, which demonstrates that Ve ·∇Ue van-
ishes at z ¼ 0 since the neutral point coincides with the
stagnation point in this symmetric configuration. The

thermal pressure term ∇ · P
↔

e balances the nonideal electric
field at the x line while the time derivative of the inertia
∂tUe remains small at this time [32], consistent with the
study in the nonrelativistic limit [48–51]. However, the
intense current layer is strongly unstable to secondary
tearing modes, similar to the nonrelativistic limit [52]. The
time derivative of inertia ∂tUe becomes finite positive when
the de-scale current layer extends in length, and ∂tUe
becomes finite negative (i.e., contributing to reconnection)
when a secondary tearing starts to emerge in a sufficiently
long layer (Supplemental Material B [38]).
Simple model.—While previous theories [12,13,16,19]

generalize the Sweet-Parker [14,15] or Petschek [21]
models into the relativistic regime, here we simply analyze
the conservation of mass including the influence of
the Lorentz contraction over a control volume of size L × δ

V inγinn0inL ¼ Voutγoutn0outδ: ð1Þ
Here, the subscripts “in” and “out” indicate the inflowing
and outflowing plasmas, respectively. Given a magnetic
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FIG. 2 (color online). (a) ne, Ey þ ðVe × BÞy, and jVezj along
the vertical cut shown in Fig. 1(d). jVezj is scaled by the right axis.
The green circle marks the location where the frozen-in condition
starts to fail. (b) Evolution of the normalized reconnection electric
field Ey=Bx;u and the peak Vez near the major x line at minðAyÞ
along z ¼ 0. Here, Ay is the y component of the vector potential.
(c) Quantities of Ohm’s law along the vertical cut shown in
Fig. 1(d). (d) The blowup of (c) near the magnetic neutral point.
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shear angle, the outflow is limited by the upstream Alfveń
wave velocity projected into the x direction [31]

Vout ¼ VAx ¼ c

ffiffiffiffiffiffiffiffiffiffiffi
σx

1þ σ

r
: ð2Þ

Here, the upstream magnetization parameter is σ ¼ σx þ σg
with σg ≡ B2

g=ð8πwÞ accounting for the contribution from
the guide field. The effective Lorentz factor based on the
bulk flows is γout ¼ 1=½1 − ðVout=cÞ2�1=2 ¼ ½ð1þ σÞ=ð1þ
σgÞ�1=2 and γin ¼ fð1þ σÞ=½1þ σ − σxðV in=VAxÞ2�g1=2.
Working through the algebra, the peak inflow velocity

can be determined with only one free parameter rn0δ=L

V in

c
¼

�
rn0

δ

L

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σx

1þ σg þ ðrn0δ=LÞ2σx

r
; ð3Þ

where rn0 ≡ n0out=n0in is the proper density ratio of the
outflow to inflow. The compression factor is

nout
nin

¼ rn0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

1þ σg þ ðrn0δ=LÞ2σx

s
; ð4Þ

and the normalized reconnection rate is

R≡ V in

VAx
¼

�
rn0

δ

L

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ

1þ σg þ ðrn0δ=LÞ2σx

s
: ð5Þ

Note that R differs from V in=c by a factor c=VAx. From the
frozen-in condition, the normalized rate can also be written
as R ¼ ðc=VAxÞEy=Bx;u. In the limit of VAx → c, then R ∼
V in=c ∼ Ey=Bx;u as shown in Fig. 2(b).
With the assumption of rn0δ=L ¼ 0.1, as in the non-

relativistic limit, Eqs. (3) and (5) immediately give
R ∼ V in=c ¼ 0.69, consistent with the observed values
for the case discussed. By comparing the measured
compression factor ∼8.3 in Fig. 2(a) and nout=nin ¼
6.9rn0 from Eq (4), this implies that rn0 ∼Oð1Þ and there-
fore the aspect ratio δ=L ∼Oð0.1Þ. The aspect ratio of the
intense Ey þ ðVe × BÞy layer shown in Fig. 2(d) seems to
be consistent with this idea; however, a definite measure-
ment is difficult because of time dependency (more in
Supplemental Material C [38]). To further test these
predictions, a series of runs were performed over a wide
range of parameters (listed in Table I). The measurement of
V in=c and R are shown in Fig. 3 as diamonds, which agree
closely with the predicted scaling based on rn0δ=L ¼ 0.1.
This suggests that the modified aspect ratio of the diffusion
region persists during the transition from the nonrelativistic
to the strongly relativistic regime. With a larger σx, both the
outflow and inflow speeds become closer to the speed of
light. For antiparallel initial conditions (i.e., σg ¼ 0), both
V in=c and R approach unity only when σx > Oð100Þ, as
shown in Figs. 3(a)–3(b), a condition obtained by demand-
ing ðrn0δ=LÞ2σx ¼ 0.01σx ≫ 1 in the denominator of
Eqs. (3) and (5). On the other hand, with a guide field

Bg=B0 ≳Oð1Þ, the outflow speed (2) becomes nonrelativ-
istic, the Lorentz contraction becomes negligible, and the
reconnection rate therefore goes back to ∼0.1 as shown in
Fig. 3(d). To test the dependence on the choice of initial
conditions, we have also performed an additional series of
simulations using a force-free current sheet for the initial
condition [25]. The final states are similar to those of initial
Harris sheets and the measurements shown as blue dia-
monds in Figs. 3(a)–3(b) follow the same trend, which
demonstrates that the scaling in the nonlinear stage is
determined solely by the upstream condition. Our model
appears to explain the scaling of the normalized rate
observed in the two-fluid simulations of Zenitani et al.
[18] as well. Unfortunately, due to the complexity of the
evolution in the nonlinear phase, we are not able to predict
the reconnection rate normalized by the far upstream
reconnecting component, which approaches a maximum
of ∼0.3 for cases with σx ∼Oð500Þ in the present study.
Discussion.—During the initial evolution of Harris-type

current sheets, the pressure balance argument proposed in
Ref. [16] restricts the inflow to V in ≪ c. However, at later
times there are a variety of features that may break this
argument. First, the repeated formation of secondary plas-
moids makes the diffusion region highly time dependent.
Second, the current density inside each of these plasmoids is
much stronger than the current density within the diffusion
regions between the plasmoids. This redistribution of current
alters the structure of the reconnection layer and leads to
strong variations in the reconnecting component of the
upstream magnetic field. As a result, the plasma pressure
and density around the x line drop significantly from the
initial sheet value (see Supplemental Material A [38] for the
pressure balance). This fact may reduce the impediment that
slows the Alfvénic outflows. For cases with a higher
upstream σ, the initial sheet component is denser and hotter.
The system takes a longer time to deplete this sheet
component and develop relativistic inflows, as suggested

FIG. 3 (color online). Scaling of the inflow velocity V in=c and
the normalized reconnection rate R as a function of σx for cases
with Bg ¼ 0 on the left, and as a function of Bg=B0 for cases with
σx ¼ 88.9 on the right. Diamonds are measurements of runs in
Table I; the green-dashed curves are predictions based on
different value of rn0δ=L as marked on the plots.
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by the comparison of the time scale between the Harris-3 and
Harris-5 cases in Table I.
In summary, a simple theory based on the Lorentz

contraction [12] and the assumption of a universal aspect
ratio (∼0.1) of the diffusion region provides an explanation
for the observed relativistic inflows and the enhanced
normalized reconnection rate. While the present Letter
was limited to 2D simulations, recent 3D simulations
demonstrate similar relativistic inflows in spite of the
development of kink instabilities [53]. These results may
be important for understanding particle acceleration
[25,54], the dissipation of strong magnetic fields in
high-energy astrophysical systems, such as the “σ problem”
in the Crab Nebula [33], and the destruction of strong
magnetic fields near magnetars [6] and black holes [9].
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