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We study directed transport of charge and intrinsic angular momentum by periodically driven scattering
in the regime of fast and strong driving. A spin-orbit coupling through a kicked magnetic field confined to a
compact region in space leads to irregular scattering and triggers spin flips in a spatially asymmetric manner
which allows us to generate polarized currents. The dynamical mechanisms responsible for the spin
separation carry over to the quantum level and give rise to spin pumping. Our theory based on the Floquet
formalism is confirmed by numerical solutions of the time-dependent inhomogeneous Schrödinger
equation with a continuous source term.
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Introduction.—The possibility to generate directed trans-
port is one of the surprising applications of nonlinear
dynamics in dissipative as well as in Hamiltonian systems
[1–3]. In the absence of dissipation, it arises if phase space
is strongly inhomogeneous, such as, e.g., in a mixed
dynamics, and all binary spatiotemporal symmetries are
broken that would lead to the occurrence of counterdirected
trajectory pairs [4]. The mechanisms of nonlinear transport
generated by mixed or chaotic Hamiltonian dynamics have
been elucidated in systems with an extended periodic
potential as in crystalline solids dubbed “ratchets” [5,6]
and in “pumps” [7–9] conceived as periodically driven
scatterers inserted between two asymptotes of free motion.
Hamiltonian systems are amenable to direct quantization
using the Floquet formalism, possibly combined with
Bloch theory. The resulting quantum ratchets [5,6] and
pumps [9] exhibit directed transport owing to similar
dynamical mechanisms as in the corresponding classical
systems or even exploit genuine quantum effects without
classical counterpart.
New phenomena emerge when internal freedoms are

included, beyond the extended spatial coordinate where
transport occurs. They enrich the dynamical scenario; in
particular, they can render integrable systems chaotic. At
the same time, inner freedoms can take part, e.g., as
“passive scalars,” in directed currents. An important appli-
cation is generating polarized currents, an indispensable
resource in spintronics [10]. Inducing directed spin trans-
port by means of chaotic pumps is an attractive option, to be
addressed in this Letter.
Polarized currents have been studied in the framework of

ratchets in a variety of settings modeling extended solid-
state or molecular systems, exploiting their static structural
and electronic features [11,12]. By contrast, we here
consider transport of angular momentum owing exclusively
to nonlinear dynamics. As a complementary orientation
besides spin ratchets, we take into account the conditions

and basic features of the chaotic pumping of point particles
[7–9]: Working in the nonadiabatic regime of fast and/or
strong external forcing permits us, for example, to surpass
linear response and to obtain directed transport already with
a single driven parameter [9].
We shall introduce angular-momentum pumps on the

classical level, partially reviewing material from Ref. [8], to
specify models, fix notations, and discuss typical dynami-
cal scenarios: Kicked (impulsively modulated) magnetic
fields constrained to compact regions in space provide the
necessary spin-orbit coupling and intrinsically break time-
reversal invariance (TRI), yet are simple enough to facili-
tate analytical and numerical treatments. We skip the
semiclassical regime, as concerns the inner freedom, of
large quantum angular momenta (in the following, we use
the terms “angular momentum” and “spin” interchangeably
wherever no confusion is caused) and jump directly to the
opposite limit of directed transport of spin-1

2
particles in

quantum pumps, by driven chaotic scattering of charge
carriers. We use Floquet theory to quantize periodically
driven scattering without the limitations of adiabatic or
perturbative approaches [13,14] and present numerical
evidence for directed spin transport obtained by solving
the time-dependent Schrödinger equation with source term
[15,16]. At least as concerns the underlying dynamics of
the external degree of freedom, similar mechanisms apply
as in the classical case. Pertinent features of chaotic pumps,
such as the sensitive parameter dependence and frequent
sign changes of the current, carry over to the quantum level
and enable, in particular, pure spin without charge transport
and vice versa. We conclude by pointing out the possibility
of realizing chaotic spin pumps in the laboratory using
present-day technology to drive quantum dots in the
terahertz regime [17]. A particular topic left open by our
work is the semiclassical analysis of the electron spins
coupled to an orbital motion close to the classical limit
[18–20].
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Classical angular-momentum pump.—In order to model
chaotic scattering of point particles with angular momen-
tum, we seek drivings that simultaneously fulfill three
tasks: (i) coupling the angular momentum to the orbital
freedom such that the interaction goes beyond mere
precession and not even the polar angle of the spin is
conserved, (ii) rendering the dynamics at least partially
irregular, and (iii) break TRI. Moreover, they should be
sufficiently simple to facilitate their analytical treatment
and permit efficient numerical simulations where neces-
sary. These conditions are satisfied by magnetic fields
modulated by a chain of delta kicks, allowing for a
reduction to discrete time, and confined to compact regions
in the extended coordinate. In charged particles, the
intrinsic angular momentum gives rise to a magnetic dipole
moment coupled to the spatial motion via the inhomo-
geneous magnetic field. Transversal components of the
Lorentz force are neglected, assuming the longitudinal
velocity to be sufficiently small. The force exerted on
electrons by the induced electric field, for the model
specified below, proves to contribute a term identical to
the Lorentz force and is neglected for the same reason.
We consider one-dimensional spatial motion with

momentum p in the longitudinal direction x coupled to
a spin vector s ¼ ðsx; sy; szÞ with components also in the
ðy; zÞ plane, by the Hamiltonian [8]

Hðp; x; s; tÞ ¼ H0ðpÞ þ Vðs; xÞ
X∞
n¼−∞

δðt − nT − tinÞ; ð1Þ

H0ðpÞ ¼
p2

2m0

; Vðs; xÞ ¼ γs · BðxÞ; ð2Þ

with mass m0 and gyromagnetic ratio γ. Alternatively, the
Lorentz force could couple the spin to an electric field, as in
a Rashba term ∼ðs × pxÞ · ez [12]. The magnetic field is
modulated in time by periodic kicks with period T and
phase ϕin ¼ 2πtin=T [7] and in space by an envelope fðxÞ
that vanishes outside the interval ½−a=2; a=2� yet is
infinitely often differentiable within,

BðxÞ ¼ (0;B1ðxÞ;B2ðxÞ); BσðxÞ ¼ Aσf(x− ð−Þσ a
2);

σ ¼ 1;2; fðxÞ ¼ exp

�
−1

ða=2Þ2 − x2

�
Θ½a=2− jxj�: ð3Þ

Henceforth, we set m0 ¼ γ ¼ T ¼ jsj ¼ 1. Where not
specified otherwise, a ¼ 4. We place time sections immedi-
ately before each kick, tn ¼ nT − 0þ, and align the y axis
as well as the axis of reference for the angular momentum,
s ¼ jsjðsin θ sinφ; cos θ; sin θ cosφÞ, with the local field in
each sector, ey ≡B=jBj, to arrive at stroboscopic maps for
the two field sectors

pnþ1 ¼ pn − 2xσ;nBσðxσ;nÞ
cos θσ;n

½ða=2Þ2 − x2σ;n�2
; ð4Þ

φσ;nþ1 ¼ φσ;n − Bσðxσ;nÞ; ð5Þ

xσ;nþ1 ¼ xσ;n þ pnþ1: ð6Þ

Here, BσðxÞ, φσ;n, and xσ;n ¼ xn − ð−1Þσa=2 refer, respec-
tively, to the magnetic field, azimuth, and position in each
sector of the interaction region. Precession within each field
sector conserves the polar angle θn, but passing from one to
the other [8], it may change.
The spin-orbit coupling already violates TRI. In order to

break also a remaining spatial symmetry under the rotation
x → −x, y ↔ z (cf. Fig. 1), we allow for a difference
ΔA ¼ A2 − A1 as the symmetry-breaking parameter.
As expected, for a periodically driven system with two

freedoms, Eqs. (4)–(6) generate a nonintegrable dynamics
with a mixed phase space; see Figs. 2(a) and 2(b). Criteria
for irregular scattering [21], such as fractal structures in the
deflection functions [Figs. 2(c) and 2(d)] and an exponen-
tial distribution of sojourn times [Figs. 2(e) and 2(f)],
are fulfilled. We observe in Figs. 2(c) and 2(d) that
irregular scattering prevails for incoming angular momenta
polarized in the direction of the field, θin ≲ π=2, while for
θin ≳ π=2, scattering is almost exclusively regular. This
marked contrast is readily explained: For particles with
cosðθinÞ < 0 (spin down), the interaction γs · BðxÞ amounts
to a potential barrier reflecting them back before they
enter the scattering region. By contrast, particles with
cosðθinÞ > 0 (spin up) see a potential well, are attracted
into the scattering region, and undergo chaotic scattering,
which tends to randomize the outgoing with respect to the
incoming conditions. The threshold appears slightly above
θin ¼ π=2, since for small negative B · s, the incoming
kinetic energy may still suffice to surmount the potential
barrier.
This asymmetry is reflected in an imbalance between

reflection and transmission processes, which, in turn,
depends on the incoming direction and, thus, can be
exploited to generate directed currents. If for individual
scattering events the outgoing direction is the same,
irrespective of the sign of pin, for otherwise equivalent
incoming conditions, transport into that direction is

FIG. 1. Configuration of the magnetic field, Eq. (3). In each of
the two sectors σ ¼ 1; 2, the field is isotropic, with an angle of
π=2 between them. For identical envelopes, the field is symmetric
with respect to rotation by π around the bold line, corresponding
to the transformation x → −x, y ↔ z.
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preferred. Averaging over incoming directions and con-
ditions, this may lead to biased probabilities for transport to
the right vs to the left. We calculate the probability current
as [7]

Ip ¼ ðT lr þ Rrr − Rll − TrlÞ; ð7Þ

where Tαβ, Rαα, α; β ¼ l (left) or r (right) denote the
fraction of particles transmitted from channel α to β or
reflected from α back into α, respectively.
Angular-momentum currents will be defined, anticipat-

ing their generalization to spin currents, as Is ¼ Iþ − I−,
where Iþ (I−) are the partial currents for spin up or down.
Replacing the discrete spin orientation by the continuous
polar angle of the angular momentum, we arrive at the
definition [8],

Is ¼
jsj
4π

Z
π

0

dθ sin θ
Z

π

−π
dφ cos θjðθ;φÞ; ð8Þ

with the probability current density jðθ;φÞ ¼ jlrðθ;φÞþ
jrrðθ;φÞ − jllðθ;φÞ − jrlðθ;φÞ. Partial currents jαβ are
labeled in the same way as Tαβ, Rαα [cf. below Eq. (7)]
and are obtained by averaging over suitable ensembles of
initial conditions with ðθ;φÞ fixed. Figure 3(a) shows the
effective outgoing spin per scattering event for broken
reflection symmetry A1 ≠ A2.
Particle as well as spin currents for the system (1)–(3) are

shown in Fig. 3(b) as functions of the width a of the
scattering region, with and without symmetry A1 ¼ A2.
Current reversals give rise to pure charge transport where

the angular-momentum current vanishes and vice versa
(blue and red arrows, respectively).
Quantum spin pump.—In the sequel, we shall contrast

classical chaotic angular-momentum pumps with the
pumping of spin-1

2
particles, quantizing the spatial motion

as well as the angular momentum of the model presented
above. While jumping directly to the deep quantum regime
as concerns the angular momentum, we leave the relative
Planck’s constant [the ratio of ℏ to some characteristic
action related to the ðx; pÞ phase space] as a parameter for
the orbital motion.
The Hilbert space appropriate for this setup comprises

spinors ψðx; tÞ ¼ ðψ−;ψþÞ, ψ�ðx; tÞ denoting the spin up
or down components of the wave function. Its time
evolution is determined by the Schrödinger equation
iℏ∂jψðtÞi=∂t ¼ ĤðtÞjψðtÞi with the Hamiltonian

Ĥðp̂; x̂; tÞ¼ Ĥ0ðp̂Þþ V̂ðx̂; tÞ
X∞
n¼−∞

δðt−nT− tinÞ: ð9Þ

Here, V̂ðx̂; tÞ ¼ μBσ̂ ·Bðx̂Þ, with σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ, the vec-
tor of Pauli matrices. The Floquet operator

ÛF ¼ T̂ exp

�
−
i
ℏ

Z
T−0þ

−0þ
dtĤðtÞ

�
; ð10Þ

where T̂ effects time ordering, generates the time evolution
over a single period T. With the kicked modulation (3) of
the magnetic field, it takes the form
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FIG. 2. Irregular scattering in the classical angular-momentum
pump, Eqs. (1)–(3). Left: Poincaré sections in the ðx; pÞ plane for
positive [θin ¼ 0(a)] and negative incoming angular momentum
[θin ¼ π (b)]. Center: Deflection functions for outgoing momen-
tum pout (c) and azimuth φout (d) vs initial polar angle θin. Right:
Sojourn time statistics for asymmetric [A1 ¼ 2, A2 ¼ 1 (e)] and
symmetric field envelope [A1 ¼ A2 ¼ 1 (f)]. Straight lines:
Exponential decay for mean sojourn time htstay=Ti ¼ 11.6
(e) and 11.8 (f). Further initial conditions and parameters are
φin ¼ 0, A1 ¼ A2 ¼ 1, and (c),(d) pin ¼ 1, θin ¼ π=4, xin ¼ −4.
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FIG. 3 (color online). Directed currents in the classical angular-
momentum pump, Eqs. (1)–(3). (a) Effective outgoing spin
cos θout [color code, from red (<0) through white (0) through
blue (>0)] as a function of incoming polar angle θin and linear
momentum pin, for A1 ¼ 2, A2 ¼ 1. (b) Particle current Ip
[Eq. (7), dotted blue] and angular-momentum current Is
[Eq. (8), red solid], as functions of the field width a for
A1 ¼ 8, A2 ¼ 1, averaged over the ranges 0 ≤ θin ≤ π and
jpinj ≤ 1. Other initial conditions are ϕin ¼ φin ¼ 0. Red (blue)
arrows indicate pure spin (particle) transport. For A1 ¼ A2 ¼ 1,
both currents vanish (dashed).
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ÛF ¼ exp

�
−
i
ℏ
Ĥ0T

�
exp

�
i
ℏ
μBðB1ðx̂Þσ̂y þ B2ðx̂Þσ̂zÞ

�
;

ð11Þ

which couples the spinors ψ− and ψþ to one another.
Time-periodic scattering is inelastic in the sense that

energy is conserved only modℏω, incoming and outgoing
energies are related by Eout;l ¼ Ein þ lℏω, with ω ¼ 2π=T.
The index l ∈ Z labels Floquet channels and counts the
number of photons exchanged with the driving field [22].
Likewise, transmission and reflection coefficients can be
decomposed in Floquet channels, e.g., by Fourier trans-
forming the asymptotic outgoing waves ψ�∞ðpÞ. The
transmission probability per channel is then obtained as

Tαβ;lðEinÞ ¼
���� pin

pout;l

ψ∞ðpout;lÞ
ψ−∞ðpinÞ

����
2

; ð12Þ

where pinðout;lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEinðout;lÞ

p
. Figure 4(a) shows the

transmissions T lr;l for l ¼ 0, �1, �2 vs the width a of
the field sectors. They have been obtained by scattering a
continuous incoming wave [15,16], which, by contrast to
wave packet scattering, allows us to precisely define the
incoming momentum pin and, hence, to break down the
outgoing plane waves unambiguously into Floquet chan-
nels ψ�∞ðpout;lÞ [16].
In Fig. 4(b), we compare particle and spin currents as

functions of the width a, for fixed field amplitudes A1, A2.
As in the classical case, reversals of the particle current Ip
at appreciable values of the spin current Is (red arrows) give
rise to pure spin transport. The role of symmetry breaking is
clearly reflected in the transport features: In the symmetric
case A1 ¼ A2 (dashed), both currents vanish identically.
They tend to vanish as well for too-low driving frequency,
corresponding to the adiabatic limit where a two-parameter
driving would be required to generate directed transport.
Similarly, for too-strong driving, the mechanism for asym-
metric scattering pointed out above looses validity, and
pure spin currents do not appear anymore.
Conclusion.—As a prototypical example for periodically

driven chaotic scattering with internal freedoms, we have
presented a model that couples the angular momentum of
the scattered particles via a time-dependent inhomogeneous
magnetic field to the orbital motion. The magnetic field
serves three purposes: breaking time-reversal invariance,
rendering the motion chaotic, and inducing spin flips.
Particle as well as angular-momentum currents generated
by the irregular scattering exhibit frequent current reversals
which give rise to pure transport of charge or angular
momentum. The markedly asymmetric transport is
explained by the fact that only for one spin polarization,
particles undergo irregular scattering, while for the opposite
orientation, they are immediately reflected. This mecha-
nism does not require a driving that breaks TRI, a
symmetric single-parameter time dependence is sufficient.

These results largely carry over to spin pumps obtained
by quantizing angular-momentum pumps. Representing
spin-1

2
particles by spinors and treating the periodic driving

in the Floquet formalism, we derive a quantum map that
couples spin flips to the orbital motion. As in classical
asymmetric scattering, we have found directed transport
with current reversals both for charge and spin currents. It is
even possible to decompose these currents in Floquet
channels, associating directed transport to the exchange
of photons with the driving field. Nonvanishing spin
transport at zeros of the charge current opens a new way
based on nonlinear dynamics to generate polarized currents
applicable, e.g., in spintronics. Implementing the pump as a
semiconductor superlattice (spatial scale ∼10 nm), with the
kicked electromagnetic field coupled in as a modulated
(e.g., as a frequency comb) terahertz free-electron laser
source [17] (kick period ∼10−11 s, peak magnetic field
∼0.16 T) would result in interaction energies of the order of
10−6 eV for electrons. It is comparable to the asymptotic
kinetic energy of incoming electrons for the same param-
eters and spatial and temporal scales of our model,
indicating that an experimental realization with state-of-
the-art laboratory equipment is feasible.
The technically demanding task of numerical simula-

tions in the semiclassical regime of the orbital degree of
freedom, as well as corresponding semiclassical approx-
imations [19,20], remain as challenges for future work.
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