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In the construction of spectral manifolds in noncommutative geometry, a higher degree Heisenberg
commutation relation involving the Dirac operator and the Feynman slash of real scalar fields naturally
appears and implies, by equality with the index formula, the quantization of the volume. We first show that
this condition implies that the manifold decomposes into disconnected spheres, which will represent quanta
of geometry. We then refine the condition by involving the real structure and two types of geometric quanta,
and show that connected spin manifolds with large quantized volume are then obtained as solutions.
The two algebras M2ðHÞ and M4ðCÞ are obtained, which are the exact constituents of the standard model.
Using the two maps fromM4 to S4 the four-manifold is built out of a very large number of the two kinds of
spheres of Planckian volume. We give several physical applications of this scheme such as quantization of
the cosmological constant, mimetic dark matter, and area quantization of black holes.
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Introduction.—To reconcile general relativity with quan-
tum mechanics it is natural to try to find a generalization of
the Heisenberg commutation relations ½p; q� ¼ iℏ. One
expects the role of the momentum p to be played by the
Dirac operator; however, the role of the position variable q
is more difficult to discover. In noncommutative geometry a
geometric space is encoded by a spectral triple ðA;H; DÞ
where the algebra A is the algebra of functions, which
interacts with the inverse line element D by acting in the
same Hilbert space H, where D is an unbounded self-
adjoint operator. There is, in the even-dimensional case, an
additional decoration given by the chirality operator γ ¼ γ�,
γ2 ¼ 1, Dγ ¼ −γD [1]. For a compact spin Riemannian
manifoldM the algebra A is the algebra of operator-valued
functions on M, the Hilbert space H is the Hilbert space of
L2 spinors, and the operator D is the Dirac operator. These
operator theoretic data encode not only the geometry (the
Riemannian metric) but also the K-homology fundamental
class of M, which is represented by the K-homology class
of the spectral triple. Among the operator theoretic proper-
ties fulfilled by the special spectral triples coming from
Riemannian geometries, one of them called the orientabil-
ity condition asserts that, in the even-dimensional case,
one can recover the chirality operator γ as an expression of
the form

γ ¼
X

a0½D; a1� � � � ½D; an�; ð1Þ

where the aj ∈ A and the formal expression is a totally
antisymmetric Hochschild cycle that represents the (oriented)

volume form dv of the manifold [2] (for simplification, we
have dropped the summation index appearing in this equa-
tion). Our goal in this Letter is to show that the quantized
Heisenberg commutation relations are a quantized form of
the orientability condition. It was observed in Ref. [2] that in
the particular case of even spheres the trace of the Chern
character of an idempotent e, i.e. e2 ¼ e, leads to a
remarkably simple operator theoretic equation, which takes
the form (up to a normalization factor ð1=2n=2n!Þ)

hY½D; Y� � � � ½D; Y�i ¼ ffiffiffi
κ

p
γ ðn terms ½D; Y�Þ: ð2Þ

Here κ ¼ �1 and Cκ ⊂ MsðCÞ, s ¼ 2n=2, is the Clifford
algebra on nþ 1 gamma matrices ΓA, 1 ≤ a ≤ nþ 1 [3]

ΓA ∈ Cκ; fΓA;ΓBg ¼ 2κδAB; ðΓAÞ� ¼ κΓA:

We let Y ∈ A ⊗ Cκ be of the Feynman slashed form
Y ¼ YAΓA, and fulfill the equations

Y2 ¼ κ; Y� ¼ κY: ð3Þ
When we write ½D; Y� in Eq. (2), we mean ½D ⊗ 1; Y�.
Finally hi applied to a matrix Ms of operators is its trace.
Note that here the components YA ∈ A but it is true in

general that Eq. (3) implies that the components YA are self-
adjoint commuting operators.
In spectral geometry the metric dimension of the under-

lying space is defined by the growth of the eigenvalues of the
Dirac operator. As shown in Ref. [2] for even n, Eq. (2)
together with the hypothesis that the eigenvalues of D grow
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as in dimension n imply that the volume, expressed as the
leading term in the Weyl asymptotic formula for counting
eigenvalues of the operator D, is “quantized” by being equal
to the index pairing of the operatorDwith theK-theory class
of A defined by the projection e ¼ ð1þ ffiffiffi

κ
p

YÞ=2.
In this Letter we shall take Eq. (2), and its two-sided

refinement (4) below using the real structure, as a geometric
analogue of the Heisenberg commutation relations ½p; q� ¼
iℏ where D plays the role of p (momentum) and Y the role
of q (coordinate) and use it as a starting point of the
quantization of geometry with quanta corresponding to
irreducible representations of the operator relations. The
above integrality result on the volume is a hint of the
quantization of geometry. We first use the one-sided Eq. (2)
as the equations of motion of some field theory on M,
obtained from the spectral data, and describe the solutions
as follows. (For details and proofs see Refs. [4,5]).
LetM be a spin Riemannian manifold of even dimension

n and ðA;H; DÞ the associated spectral triple. Then a
solution of the one-sided equation exists if and only if M
breaks as the disjoint sum of spheres of unit volume.
On each of these irreducible components the unit volume
condition is the only constraint on the Riemannian metric,
which is otherwise arbitrary for each component [4].
Each geometric quantum is a topological sphere of

arbitrary shape and unit volume (in Planck units). It would
seem at this point that only disconnected geometries fit in
this framework but in the noncommutative geometry
formalism it is possible to refine Eq. (2). It is the real
structure J, an antilinear isometry in the Hilbert space H,
that is the algebraic counterpart of charge conjugation. This
leads us to refine the quantization condition by taking J into
account in the two-sided equation [6]

hZ½D;Z� � � � ½D;Z�i ¼ γ Z ¼ 2EJEJ−1 − 1; ð4Þ

where E is the spectral projection for f1; ig ⊂ C of the
double slash Y ¼ Yþ ⊕ Y− ∈ C∞ðM;Cþ ⊕ C−Þ. It is the
classification of finite geometries of Ref. [7], which
suggested to use the direct sum Cþ ⊕ C− of two
Clifford algebras and the algebra C∞ðM;Cþ ⊕ C−Þ. It
turns out moreover that in dimension n ¼ 4 one has
Cþ ¼ M2ðHÞ, the 2 × 2 matrix algebra whose elements
are quaternions, and C− ¼ M4ðCÞ, which is in perfect
agreement with the algebraic constituents of the standard
model [7]. One now gets two maps Y�∶M → Sn while, for
n ¼ 2; 4, Eq. (4) becomes

detðeaμÞ ¼ Ωþ þΩ−; ð5Þ

where eaμ is the vierbein, with Ω� the Jacobian of Y� (the
pullback of the volume form of the sphere).
Let n ¼ 2 or n ¼ 4, then [4]
(i) In any operator representation of the two-sided Eq. (4)

in which the spectrum of D grows as in dimension n the

volume (the leading term of the Weyl asymptotic formula)
is quantized.
(ii) Let M be a compact oriented spin Riemannian

manifold of dimension n. Then a solution of Eq. (5) exists
if and only if the volume ofM is quantized to belong to the
invariant qM ⊂ Z defined as the subset of Z

qM ¼ fdegðϕþÞ þ degðϕ−Þ∣ϕ�∶ M → Sng;
jϕþjðxÞ þ jϕ−jðxÞ ≠ 0; ∀x ∈ M; ð6Þ

where deg is the topological degree of the smooth maps and
jϕjðxÞ is the Jacobian of ϕ at x ∈ M.
The invariant qM makes sense in any dimension. For

n ¼ 2; 3, and any M, it contains all sufficiently large
integers. The case n ¼ 4 is much more difficult, but the
proof that it works for all spin manifold is given in Ref. [4].
It is natural from the point of view of differential

geometry to consider the two sets of Γ matrices and then
take the operators Y and Y 0 as being the correct variables for
a first shot at a theory of quantum gravity. Once we have the
Y and Y 0 we can use them and get a map ðY; Y 0Þ: M →
Sn × Sn from the manifold M to the product of two n
spheres. Given a compact n-dimensional manifold M one
can find a map ðY; Y 0Þ: M → Sn × Sn that embeds M as a
submanifold of Sn × Sn. This is a known result, the strong
embedding theorem of Whitney, [8], which asserts that any
smooth real n-dimensional manifold (required also to be
Hausdorff and second countable) can be smoothly
embedded in the real 2n space. Of course R2n ¼ Rn ×
Rn ⊂ Sn × Sn so that one gets the required embedding.
This result shows that there is no restriction by viewing the
pair ðY; Y 0Þ as the correct “coordinate” variables.
Quantization of four-volume.—We now specialize to a

four-dimensional Euclidean manifold and for simplicity
consider only one set of maps, as this does not affect the
analysis, and write Y ¼ YAΓA, A ¼ 1; 2;…; 5, where YA

are real and ΓA are the Hermitian gamma matrices satisfy-
ing fΓA;ΓBg ¼ 2δAB. The condition Y2 ¼ 1 implies

YAYA ¼ 1; ð7Þ

where the index A is raised and lowered with δAB, thus
defining the coordinates on the sphere S4. Notice that YA

are functions on the Euclidian manifold M4, which depend
on the coordinates xμ. The Dirac operator on M4 is

D ¼ γμ
� ∂
∂xμ þ ωμ

�
; ð8Þ

where γμ ¼ eμaγa and γ1γ2γ3γ4 ¼ γ, and ωμ is the con-
nection, so that ½D; Y� ¼ γμð∂YA=∂xμÞΓA. Using the prop-
erties of gamma matrices one can check that the condition
(2) reduces to
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detðeaμÞ ¼
1

4!
ϵμνκλϵABCDEYA∂μYB∂νYC∂κYD∂λYE: ð9Þ

Integrating over the volume of the manifold we find that

V ¼
Z

1

4!
ϵμνκλϵABCDEYA∂μYB∂νYC∂κYD∂λYEd4x

¼
Z

detðeaμÞd4x ¼ 8π2w
3

: ð10Þ

This number w is the number of components when using
the one-sided Eq. (2) but using Eq. (4) one gets the sum
of the degrees of the maps Y�: M → Sn [9]. Thus, we
conclude that in noncommutative geometry the volume of
the compact manifold is quantized in terms of Planck units.
This solves a basic difficulty of the spectral action [1]
whose huge cosmological term is now quantized and no
longer contributes to the field equations.
Gravitational action and cosmological constant.—Let us

study consequences of the four-volume quantization for
Einstein gravity. For simplicity we shall utilize one set of
maps YAðxÞ since most of the details of what follows do not
change when two sets YA

�ðxÞ are used instead. First, we
consider Euclidian compact spacetime and implement the
kinematic constraints (7) and (9) in the action for gravity
through Lagrange multipliers. This action then becomes

I ¼ −
1

2

Z
d4x

ffiffiffi
g

p
Rþ 1

2

Z
d4x

ffiffiffi
g

p
λ0ðYAYA − 1Þ

þ
Z

d4x
λ

2

� ffiffiffi
g

p
−
ϵμνκλ

4!
ϵABCDE

× YA∂μYB∂νYC∂κYD∂λYE

�
; ð11Þ

where 8πG ¼ 1. Notice that the last term is a four-form and
represents the volume element of a unit four-sphere. It can
be written in differential forms and is independent of
variation of the metric. Variation of the action with respect
to the metric gives

Gμν þ
1

2
gμνλ ¼ 0; ð12Þ

where Gμν ¼ Rμν − 1
2
Rgμν is the Einstein tensor. Tracing

this equation gives λ ¼ − 1
2
G, and as a result equations for

the gravitational field become traceless

Gμν −
1

4
gμνG ¼ 0: ð13Þ

Using the Bianchi identity these equations imply that
∂μG ¼ 0, and hence G ¼ 4Λ, where Λ is the cosmological
constant arising as a constant of integration (compare to
Ref. [10]). Variation of the action with respect to YA does

not lead to any new equations because the last term in
Eq. (11) is a topological invariant if YAYA ¼ 1.
One immediate application is that, in the path integration

formulation of gravity, and in light of having only the
traceless Einstein equation (13), integration over the scale
factor is now replaced by a sum of the winding numbers
with an appropriate weight factor. We note that for the
present universe, the winding number equal to the number
of Planck quanta would be ∼1061 [11].
Three-volume quantization and mimetic matter.—In

reality spacetime is Lorentzian and generically has one
noncompact dimension corresponding to time. Therefore,
the condition for the volume quantization is literally
nonapplicable there. However being implemented in the
Euclidian action it leads nevertheless to the appearance of
the cosmological constant as an integration constant even in
the Lorentzian spacetime. To show this let us first make a
Wick rotation and then decompactify M4 to R × S3. With
this purpose we set Y5 ¼ ηX and one of the coordinates say
x4 → ηt and take the limit η → 0. In this limit Eq. (7)
becomes YaYa ¼ 1, a ¼ 1;…; 4, and the constraint (9)
turns to

ffiffiffi
g

p ¼ lim
η→0

�
1

4!
κ4ϵμνκλϵABCDEYA∂μYB∂νYC∂κYD∂λYE

�

¼ 1

3!
ϵμνκλϵabcdð∂μXÞYa∂νYb∂κYc∂λYd: ð14Þ

The Lorentzian action for the gravity is

I ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
λ0ðYaYa − 1Þ

þ
Z

d4x
λ

2

� ffiffiffiffiffiffi
−g

p
−

1

3!
ϵμνκλϵabcdð∂μXÞ

× Ya∂νYb∂κYc∂λYd

�
: ð15Þ

The equations of motion in this case are the same as before
and the cosmological constant arises as a constant of
integration. The variableX in Eq. (15) is a priori unrestricted.
We will show now that the requirement of the volume
quantization of S3 in the mappingM4 → R × S3 leads to the
following normalization condition for this variable:

gμν∂μX∂νX ¼ 1: ð16Þ

Let us consider the 3þ 1 splitting of spacetime, so that

ds2 ¼ hijðdxi þ NidtÞðdxj þ NjdtÞ − N2dt2; ð17Þ

whereNðxi; tÞ and Niðxi; tÞ are the lapse and shift functions,
respectively, and

ffiffiffiffiffiffi−gp ¼ N
ffiffiffi
h

p
. Consider a hypersurface Σ

defined by constant t. Taking
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∂iX ¼ 0; ∂tX ¼ N; ð18Þ
which satisfy Eq. (16), we have (for details see Ref. [5])

ðN
ffiffiffi
h

p
ÞΣ ¼ 1

3!
NðϵijkYa∂iYb∂jYc∂kYdϵabcdÞ; ð19Þ

and therefore
R
Σ

ffiffiffi
h

p
d3x ¼ wð4

3
π2Þ, where w is the winding

number for the mapping Σ → S3. Thus, we have shown that
Eq. (16) implies quantization of the volume of compact 3D
hypersurfaces in 4D spacetime. This condition can be
understood as a restriction of the maps YAðxÞ along
directions orthogonal to the hypersurface Σ, to be length
preserving. To incorporate this condition in the action (15)
we add to it the term

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
λ00ðgμν∂μX∂νX − 1Þ; ð20Þ

which corresponds to mimetic dark matter [12,13]. Thus, the
resulting action describes both dark matter and dark energy.
Both substances arise automatically when the kinematic 4D
and 3D compact volume quantization in noncommutative
geometry is incorporated in the gravity action. We note that
the same field X could be used when we consider two
different set of maps YAþðxÞ and YAðxÞ from Σ to S3.
Area quantization and black holes.—We can determine

the conditions under which the area of any compact 2D
submanifold of the 4D manifold must also be quantized.
One can show (see Ref. [5] for details) that by writing
Y4 ¼ ηX1, Y5 ¼ ηX2 and rescaling the coordinates trans-
verse to the 2D hypersurface Σ as xα → ηxα we get

ffiffiffiffiffiffiffi
ð2Þg

q
¼ detðeai Þ ¼

1

2!
ϵijϵABCYA∂iYB∂jYC; ð21Þ

provided that the area preserving condition on the hyper-
surface

det ðgμν∂μXm∂νXnÞjΣ ¼ 1; m; n ¼ 1; 2; ð22Þ
is satisfied, where the index A in YA now equals 1,2,3 and xi

are coordinates on the hypersurface. Hence, the area of a
two-dimensional manifold is quantized

S ¼
Z ffiffiffiffiffiffiffi

ð2Þg
q

d2x

¼
Z

1

2!
ϵμνϵABCYA∂μYB∂νYCd2x ¼ 4πn; ð23Þ

where n is the winding number for the mapping of the
two-dimensional manifold to the sphere S2, defined by
YAYA ¼ 1.
This can have far-reaching consequences for black holes

and de Sitter space. In particular, the area of the black hole
horizon must be quantized in units of the Planck area (see
also Ref. [14]). Because the area of the black hole of mass

M is equal to A ¼ 16πM2, this implies the mass quantiza-
tion Mn ¼ ð ffiffiffi

n
p

=2Þ.
As was shown in Ref. [15], the Hawking radiation in this

case can be considered as a result of quantum transitions
from the level n to the nearby levels n − 1; n − 2;…. As a
result even for large black holes the Hawking radiation is
emitted in discrete lines and the spectrum with the thermal
envelope is not continuous. The distance between the
nearby lines for the large black holes is of order

ω ¼ Mn −Mn−1 ≃ 1

4
ffiffiffi
n

p ¼ 1

8M
; ð24Þ

and proportional to the Hawking temperature, while the
width of the line is expected to be at least 10 times less than
the distance between the lines [15]. Note that taking the
minimal area to be α larger than the Planck area changes
the distance between the lines by a factor α. Within the
framework discussed, area quantization could thus have
observable implications for evaporating black holes.
Applying the same reasoning to the event horizon in the
de Sitter universe we find that the cosmological constant in
this case must be quantized as Λn ¼ ð3=nÞ. It is likely that
this quantization can have drastic consequences for the
inflationary universe, in particular, in the regime of self-
reproduction (see also Ref. [16]).
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