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The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time
evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein’s field
equations. We show how this backreaction effect depends on shear and bulk viscosity and other material
properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could
account for the acceleration of the cosmological expansion.
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The possibility that dissipative phenomena in the form of
bulk viscosity might affect the expansion history of the
Universe has been discussed repeatedly. Indeed, for a
homogeneous and isotropic expansion, the bulk viscous
pressure is negative and could account for effects usually
attributed to dark energy and held responsible for the
current accelerating expansion of the Universe [1–3].
However, models that aim at replacing the need for separate
dark matter and dark energy components in the cosmo-
logical concordance model by invoking bulk viscosity of
dark matter are strongly challenged by cosmological
precision data [4–7]. In this Letter, we point out that
dissipative effects relevant for the expansion history of the
Universe could also arise from the shear viscous properties
of the cosmological fluid. In addition, at least in principle,
one could have a similar effect from the gain in internal
energy due to fluid motion against local pressure gradients.
In general relativity, the matter fields that enter the

energy-momentum tensor Tμν, as well as the metric gμν that
enters Tμν and the Einstein tensor Gμν, are dynamical
variables. The time evolution of the latter is determined by
Einstein’s field equations

Gμν ¼ −8πGNTμν: ð1Þ

If the Universe were completely homogeneous and iso-
tropic, the energy-momentum tensor could deviate from its
ideal form at most by a bulk viscous term, T0

0 ¼ ϵ,
Ti

j ¼ ðpþ πbulkÞδij. Einstein’s equations would then
reduce to the standard Friedmann equations that express
the time evolution of the scale factor aðτÞ in terms of the
energy density ϵ and the effective pressure peff ¼ pþ πbulk.

For the more realistic case of a universe that is homo-
geneous and isotropic only in a statistical sense, a
Friedmann-type solution acts as a background. The evo-
lution of this background is not affected by the perturba-
tions if they are small enough for only linear terms to be
kept. However, the fluctuations can backreact on the
background at nonlinear order. On the gravity side [left-
hand side of Eq. (1), broadly speaking], these backreaction
effects have come under scrutiny and are likely to be small
[8,9]. Here, we discuss backreaction effects on the matter
side of Eq. (1).
For matter described as a relativistic viscous fluid, the

energy-momentum tensor in the Landau frame (where the
fluid velocity is defined by the condition that there is no
energy current in the fluid rest frame, −uμTμν ¼ ϵuν) reads

Tμν ¼ ϵuμuν þ ðpþ πbulkÞΔμν þ πμν: ð2Þ

Here, Δμν ¼ uμuν þ gμν is a projector orthogonal to the
fluid velocity, and πμν is the shear stress, satisfying
uμπμν ¼ πμμ ¼ 0. To first order in the gradient expansion
of hydrodynamics, one has the following constitutive
relations:

πμν ¼ −2ησμν

¼ −η
�
ΔμαΔνβ þ ΔμβΔνα −

2

3
ΔμνΔαβ

�
∇αuβ; ð3Þ

πbulk ¼ −ζΘ ¼ −ζ∇μuμ; ð4Þ

where η and ζ denote the shear and bulk viscosity,
respectively. In addition, there can be conserved charges.
For a single conserved current Nα (corresponding, e.g., to
conserved baryon number or a conserved number of dark
matter particles), one has to first order in hydrodynamical
gradients a particle diffusion current να that points along
chemical potential gradients orthogonal to the fluid veloc-
ity. Its strength is set by the thermal conductivity κ:
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Nα ¼ nuα þ να; ð5Þ

να ¼ −κ
�

nT
ϵþ p

�
2

Δαβ∂β

�
μ

T

�
: ð6Þ

While keeping the next (second) order in the gradient
expansion is important for maintaining causal dynamics
and linear stability [10,11], first-order viscous hydrody-
namics is usually sufficient for practical calculations, and it
reduces in the nonrelativistic limit to the conventional
Navier-Stokes theory. We therefore restrict the following
discussion to first order.
From the covariant conservation of energy, momentum

and particle number,

∇μTμν ¼ 0; ∇μNμ ¼ 0; ð7Þ

one finds the fluid dynamic equations of motion for the
energy density,

uμ∂μϵþ ðϵþ pÞ∇μuμ − ζΘ2 − 2ησμνσμν ¼ 0; ð8Þ

the fluid velocity,

ðϵþ pþ πbulkÞuμ∇μuν þ Δνμ∂μðpþ πbulkÞ
þ Δν

α∇μπ
μα ¼ 0; ð9Þ

and the particle number density,

uμ∂μnþ n∇μuμ þ∇μν
μ ¼ 0: ð10Þ

In Eqs. (8), (9) and (10), only energy density ϵ ¼ uμuνTμν

and particle number density n ¼ uμNμ are independent
thermodynamic variables.
Einstein’s field equations (1) imply the conservation

laws (7) and thus the equations of motion (8), (9) and (10).
Here we work with the latter. Once supplemented by an
equation of state (e.o.s.), they form a closed set for the
evolution of fluid dynamic fields. At least locally, these
equations provide sufficient information about the time
evolution of the thermodynamic variables and the fluid
velocity. Also, Eqs. (8), (9) and (10) are valid for arbitrary
gravitational fields, on which they depend via the depend-
ence of the fluid velocity uμ, the projector Δμν and the
covariant derivatives ∇μ on the metric gμν. To analyze this
dependence in more detail, let us now consider a perturba-
tive ansatz for the metric

ds2 ¼ a2ðτÞ½−ð1þ 2Ψðτ; ~xÞÞdτ2 þ ð1 − 2Φðτ; ~xÞÞd~x · d~x�;
ð11Þ

where Φ and Ψ denote potentials (in conformal Newtonian
gauge) and aðτÞ is the scale factor. We follow here the
general expectation that, at least at late times, the main
modification of a simple homogeneous and isotropic

expansion is mediated by scalar fluctuations around the
background metric, and that the influence of vector and
tensor excitations is negligible [12].
With the metric of Eq. (11), the fluid velocity

can be written as uμ ¼ ðγ; γ~vÞ, where γ ¼
1=ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v2 þ 2Ψþ 2Φ~v2

p
Þ (in units where c ¼ 1). We

specialize now to the cosmologically relevant case of small
fluid velocity, ~v2 ≪ 1. The different terms entering
Eqs. (8), (9) and (10) can be computed, and to linear order
in Φ, Ψ, one finds for instance

∇μuμ ¼
1

a

h
~∇ · ~vþ 3

_a
a
−Ψ ~∇ · ~v − 3

_a
a
Ψ − 3 _Φ

− 3~v · ~∇Φ
i
: ð12Þ

In the regime of structure formation at late times, one
expects that the Newton potentials are small (Φ, Ψ ≪ 1),
that they vary slowly in time (typically with the Hubble
rate, _Φ ∼ ð _a=aÞΦ, and similarly for Ψ), and that they vary
in space on similar scales as the fluid dynamic fields [12].
In this case, only the first two terms on the right-hand side
of Eq. (12), i.e., the ones that are independent of Φ and Ψ,
must be kept. We analyze other terms in Eq. (8) in a similar
way and find that it becomes

_ϵþ ~v · ~∇ϵþ ðϵþ pÞ
�
3
_a
a
þ ~∇ · ~v

�

¼ ζ

a

�
3
_a
a
þ ~∇ · ~v

�
2

þ η

a

�
∂ivj∂ivj þ ∂ivj∂jvi −

2

3
ð ~∇ · ~vÞ2

�
; ð13Þ

where subleadingΦ-andΨ-dependent terms have now been
suppressed. An analogous argument applies also to the time
evolution (10) of the particle number density that reads, in
the same limit,

_nþ ~v · ~∇nþ n

�
3
_a
a
þ ~∇ · ~v

�

¼ 1

a
~∇ ·

�
κ

�
nT

ϵþ p

�
2
~∇
�
μ

T

��
: ð14Þ

The situation is different for the time evolution of the fluid
velocity (9), where scalar fluctuations in the metric enter to
leading order. For instance, Eq. (9) contains the Newtonian

acceleration in a term _vi þ ~v · ~∇vi þ ð _a=aÞvi þ ∂iΨ. In
this Letter, we do not use the evolution of the fluid
velocities.
We turn next to the expectation values or spatial averages

ϵ̄ ¼ hϵi and n̄ ¼ hni. From Eq. (14), one finds (neglecting
surface terms as usual)
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1

a
_̄nþ 3Hn̄ ¼ 0; ð15Þ

with Hubble parameter H ¼ _a=a2. This shows simply that
the standard dilution of particle number due to the
expansion is not modified by dissipative effects. On the
other hand, we find from Eq. (13) for the cosmological
evolution of the average energy density

1

a
_̄ϵþ 3Hðϵ̄þ p̄ − 3ζ̄HÞ ¼ D; ð16Þ

where we have introduced the shorthand

D ¼ 1

a2

�
η

�
∂ivj∂ivj þ ∂ivj∂jvi −

2

3
∂ivi∂jvj

��

þ 1

a2
hζ½ ~∇ · ~v�2i þ 1

a
h~v · ~∇ðp − 6ζHÞi: ð17Þ

The term D enters Eq. (16) as a backreaction of fluid
fluctuations onto the time evolution of the background field
ϵ̄. The shear and bulk viscous contributions of the first and
second terms on the right-hand side of Eq. (17) are positive
semidefinite, since they are expectation values of squares.
They describe the gain in internal energy due to the
dissipation of local gradients in the fluid velocity. The
third term accounts for the work done by the fluid
expanding out of high-pressure regions (or a corresponding
gain in internal energy due to contraction against a pressure
gradient).
When structures form through local gravitational col-

lapse, one expects that the shear and bulk viscous con-
tributions to D increase the internal energy. Depending on
the equation of state and the dissipative properties of the
fluid, this effect might be small or sizable. In the following,
we simply assume that it is non-negligible and discuss
possible consequences for the cosmic expansion.
To do so, we need to supplement the fluid dynamic

evolution equations with an equation for the scale factor. A
direct spatial average of Einstein’s field equation (1) with
the energy-momentum tensor (2) would involve, on its
right-hand side, unknown quantities such as hðϵþ pþ
πbulkÞuμuνi. One could project to the different terms in
Eq. (2) by contracting with the fluid velocity, e.g.,
uμuνGμν ¼ −8πGNϵ, but the space average of this equation
would involve unknown averages of velocities on the left-
hand side. We, therefore, look in Einstein’s equations for a
suitable constraint that is independent of uμ and find it in
the trace R ¼ 8πGNT

μ
μ. The averaged part hRi ¼

8πGNhTμ
μi reads

ä
a3

¼ 1

a
_H þ 2H2 ¼ 4πGN

3
ðϵ̄ − 3p̄ − 3π̄bulkÞ: ð18Þ

For given e.o.s. and thermodynamic transport properties,
one can determine the time evolution of the Hubble

parameter and the scale factor aðτÞ by solving Eq. (18)
together with Eqs. (15) and (16). However, one also needs
the parameter D in Eq. (17), which depends on correlation
functions of perturbations.
To illustrate the physics encoded in this set of equations,

we assume first for the e.o.s. a simple relation
p̄þ π̄bulk ¼ ŵ ϵ̄, with ŵ a numerical constant. A straight-
forward calculation gives for the deceleration parameter
q ¼ −1 − _H=ðaH2Þ,

−
dq

d ln a
þ 2ðq − 1Þ

�
q −

1

2
ð1þ 3ŵÞ

�

¼ 4πGNDð1 − 3ŵÞ
3H3

: ð19Þ

ForD ¼ 0, Eq. (19) has an attractive fixed point at the well-
known value q ¼ ð1þ 3ŵÞ=2. In particular, for a pure cold
dark matter universe with ŵ ¼ 0 and with negligible
dissipation, D ¼ 0, one finds deceleration, q ¼ 1=2.
Interestingly, if the right-hand side of Eq. (19) is positive,
the fixed point is shifted to more negative values of q. More
specifically, the fixed point is accelerating, i.e., q < 0, for

4πGND
3H3

>
1þ 3ŵ
1 − 3ŵ

: ð20Þ

As a result, a positive D can actually contribute to the
acceleration of the expansion, similarly to an effective
negative pressure ŵ < 0 induced by bulk viscous pressure
π̄bulk, or a positive cosmological constant, or dark energy.
Figure 1 illustrates Eq. (19) graphically and shows, in
particular, the value the dissipative term must take in order
to account for a given deceleration parameter q. We
concentrate here on vanishing effective pressure,
peff ¼ 0. For the experimentally favored value of q ≈
−0.6 [13], we conclude that the set of equations (16)
and (18) could account for the observed accelerating
expansion of the Universe if 4πGND=ð3H3Þ ≈ 3.5 (assum-
ing jdq=d ln aj ≪ 1).
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FIG. 1 (color online). Graphical representation of the evolution
equation (19) for the deceleration parameter q for the case of
vanishing effective pressure, ŵ ¼ 0.
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The above analysis of the acceleration parameter was
done for a very simple e.o.s., p̄þ π̄bulk ¼ ŵ ϵ̄. For a
universe filled with pure radiation, ŵ → 1=3, no finite
dissipative term D can satisfy Eq. (20). But for a more
realistic e.o.s., one has p ¼ pðϵ; nÞ, and Eq. (19) for the
acceleration parameter is replaced by a more complicated
expression that depends on first and second derivatives of
the thermodynamic potential pðϵ; nÞ. One then has to check
for each e.o.s. whether the combination of Eqs. (15), (16)
and (18) contributes to deceleration or acceleration, and
how sizable the effect can be.
It is useful to decompose ~v in Eq. (17) into a sum of a

gradient, characterized by θ ¼ ~∇ · ~v, and a rotation, char-

acterized by the vorticity ~w ¼ ~∇ × ~v, and to go to Fourier
space, θðxÞ ¼ R

d3q~θðqÞei~q ~x etc.,

D ¼ −
1

a

Z
d3qPθpð~qÞ þ

1

a2

�
ζ̄ þ 4

3
η̄

�Z
d3qPθθð~qÞ

þ 1

a2
η̄

Z
d3qðPwÞjjð~qÞ: ð21Þ

We assumed, for simplicity, that ζ ¼ ζ̄ and η ¼ η̄ are
constant in space, and we defined the power spectra

h~θð~q1Þ ~pð~q2Þi ¼ δð3Þð~q1 þ ~q2ÞPθpð~q1Þ;
h~θð~q1Þ~θð~q2Þi ¼ δð3Þð~q1 þ ~q2ÞPθθð~q1Þ;

h ~wið~q1Þ ~wjð~q2Þi ¼ δð3Þð~q1 þ ~q2ÞðPwÞijð~q1Þ: ð22Þ

If the spectra Pθpð~qÞ, Pθθð~qÞ and ðPwÞjjð~qÞ in Eq. (21) do
not die out faster than 1=q3,D is dominated by the UV, i.e.,
by the fine structures in position space. Hence, one expects
that the value ofD will be set by the smallest relevant scale.
This is the dissipation or virialization scale, below which a
fluid dynamic description does not apply. [In a companion
paper [14] we have analyzed in a technically more detailed
way a backreaction effect that arises in a simple fluid
dynamic model of heavy ion collisions. It is analogous to
Eqs. (16) and (17) and can be quantified along the lines
of Eq. (21).]
Leaving a detailed study ofD to future work, we explore

here the possibility that it could be sizable, in the sense that
4πGND=ð3H3Þ≳ 1 and Eq. (19) allows for accelerating
expansion. It is generally difficult to conceive that bulk
viscosity is large enough to have a substantial effect, in
particular, because neither radiation (ultrarelativistic par-
ticles) nor simple nonrelativistic gases can contribute to it
[15] (see, however, Ref. [5] for a counterexample). We
therefore focus on the shear viscous part of D. We simply
assume that typical gradients of the fluid velocity are of the
same order as the Hubble rate H, so that η̄h∂ivj∂ivj þ
∂ivj∂jvi − 2

3
∂ivi∂jvji=a2 ¼ ση̄H2 with σ of order one.

This corresponds to realistic peculiar velocity variations of
the order of 100 km=s on distances of 1 MPc. This

essentially amounts to assuming that the smallest distances
relevant for D are of this order.
It remains to estimate the shear viscosity. In general, this

will depend on the unknown material properties of the dark
sector. It is noteworthy, however, that a large shear viscosity
arises for systems containing very weakly interacting
relativistic particles of long mean-free paths (e.g., forming
an additional component to cold dark matter with shorter
range interactions) [15]. In this case, relativistic kinetic
theory suggests that [12]

η ¼ cηϵRτR; ð23Þ
where cη is a numerical prefactor of order one, ϵR is the
energy density carried by the weakly interacting particles
and τR is their mean-free time. Accelerating expansion
would result if the e.o.s. of this system is not pure radiation
and if

4πGND
3H3

¼ cηϵRτRHσ

2ρc
ð24Þ

is of order unity, where the critical energy density ρc is
defined by H2 ¼ 8πGNρc=3. On the other hand, for a
description in terms of a single fluid to be applicable, the
mean-free times of the weakly interacting particles must be
smaller than the expansion rate, τRH < 1. Thus, the term in
(24) can only become of order one if ϵR is of the same order
as ρc and if σ is somewhat larger than 1.
One may wonder whether there is any reasonable weakly

coupled candidate particle that could satisfy these con-
straints. Photons or relativistic (massless) neutrinos can be
excluded because of their too-small interaction cross
sections or, equivalently, too-long mean-free times. On
the other hand, gravitons are expected to have a mean-free
time [16]

τG ¼ 1

16πGNη
: ð25Þ

One can solve Eqs. (23) and (24) for η and τG [17], and one
finds

4πGND
3H3

¼ 4πGNησ

3H
¼ σ

ffiffiffiffiffiffiffiffiffiffi
cηϵG
24ρc

r
: ð26Þ

For an accelerating expansion, one would have to require
σ ≳ 10, cη ≈ 1 and, most importantly, a fractional energy
density of the gravitational radiation ΩG ¼ ϵG=ρc not too
far from 1. This would also satisfy the consistency
condition τGH ≲ 1. The purpose of the above comment
is not to argue that a graviton gas of such high energy
density, interacting with dark matter, can provide a phe-
nomenologically viable component of the dark sector (in
any case, this would only seem plausible if such a
component essentially plays the role of ΩΛ in the standard
concordance model). Rather, we sketch this scenario only
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to illustrate, with an example, how a specific particle
content of the dark sector affects its material properties
and how these properties may impact the large-scale
dynamics of the Universe or be constrained by it.
In summary, the main result of this Letter is the

identification of a dissipative term D in the cosmological
evolution (16) of the average energy density. This term
arises from the backreaction of fluid velocity fluctuations,
depends on shear viscosity, and may affect the expansion
history of the Universe. If sufficiently large, it could lead to
an accelerating cosmological expansion without assuming
negative effective pressure. Since the shear viscous and
bulk viscous fluctuations measured by D are expected to
take significant values only during the epoch of structure
formation, this would also provide a natural explanation for
why an accelerated cosmological expansion occurs only at
late times in the history of the Universe. Irrespectively of
the size ofD, we emphasize that dissipative phenomena are
ubiquitous in nature and that Eqs. (17) and (21) for D
provide a novel and more comprehensive framework to
account for them in discussions of the cosmological
expansion. At least in principle, Eq. (17) or (21) can be
calculated also for nonequilibrium scenarios, which is of
interest since it is a priori unclear to what extent the dark
sector is equilibrated. Also, it is conceivable that contri-
butions to D arise from sources not discussed so far. For
instance, an effective viscosity may also arise on large
length scales from a coarse-grained description of fluctua-
tions in the cosmological fluid [18,19]. Or, at least in
principle, a contribution to D could also arise from the
contraction of the fluid against local pressure gradients that
might be induced by gravitational collapse [third term in
Eq. (17)]. In view of these many physics effects, we hope
that the results derived in this Letter will help to better
constrain the role of dissipation in cosmology and the
material properties that may give rise to it.

We acknowledge useful discussions with D. Blas, M.
Garny, M. Pietroni, and S. Sibiryakov.
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