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The quantum state of a superconducting transmon qubit inside a three-dimensional cavity is monitored
by transmission of a microwave field through the cavity. The information inferred from the measurement
record is incorporated in a density matrix ρt, which is conditioned on probe results until t, and in an
auxiliary matrix Et, which is conditioned on probe results obtained after t. Here, we obtain these matrices
from experimental data and we illustrate their application to predict and retrodict the outcome of weak and
strong qubit measurements.
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In quantum mechanics, predictions about the outcome of
experiments are given by Born’s rule which for a state
vector jψ ii provides the probability PðaÞ ¼ jhajψ iij2 that a
measurement of an observable Âwith eigenstates jai yields
one of the eigenvalues a. As a consequence of the
measurement, the quantum state is projected into the state
jai. Yet, after this measurement, further probing of the
system is possible, and the probability that the quantum
system yields outcome a and is subsequently detected in a
final state jψfi factors into the product jhψfjaij2jhajψ iij2.
Considering initial and final states raises the issue of
postselection in quantum measurements: What is the
probability that the result of the measurement of Â was
a, if we consider only the selected measurement events
where the initial state was jψ ii and the final state was jψfi?
The answer is known as the Aharonov-Bergmann-
Lebowitz (ABL) rule [1],

PABLðaÞ ¼
Pðf; ajiÞP
a0Pðf; a0jiÞ

¼ jhψfjaihajψ iij2P
a0 jhψfja0iha0jψ iij2

; ð1Þ

and it differs from Born’s rule, which takes into account
only knowledge about the state prior to the measurement.
While it is natural that full measurement records reveal

more information about the state of a physical system at a
given time t than data obtained only until that time, the
interpretation of the time symmetric influences from the
future and from the past measurement events on PABL has
stimulated some debate; see, for example, [1–6]. Meanwhile,
probabilistic state assignments and correlations observed in
atomic, optical, and solid state experiments have been con-
veniently understood in relation to postselection [7–11], and
precision probing theories [12–17] have incorporated full
measurement records.
In this Letter, we consider a superconducting qubit that is

subject to continuous monitoring and driven unitary evo-
lution. We apply a recent generalization [18] of Eq. (1) to

the case of continuously monitored and evolving mixed
states. This incorporates continuous measurement out-
comes before and after t to retrodict the probabilities for
arbitrary measurements performed at time t. Our experi-
ments verify the probabilities assigned to projective mea-
surements and the mean values assigned to weak (weak
value) measurements, which are both nontrivially different
from predictions based only on the measurement record up
to time t.
To analyze nonpure states and partial measurements, we

represent our system by a density matrix ρ, and measure-
ments by the theory of positive operator-valued measures
(POVM) which yields the probability PðmÞ ¼ TrðΩmρΩ

†
mÞ

for outcome m, and the associated back action on the
quantum state, ρ → ΩmρΩ

†
m=PðmÞ, where the operators

Ωm obey
P

mΩ
†
mΩm ¼ Î. WhenΩa ¼ jaihaj is a projection

operator and ρ ¼ jψihψ j, the theory of POVMs is in
agreement with Born’s rule.
For systems subject to unitary and dissipative time

evolution along with continuous monitoring before and
after a measurement described by operator Ωm, one can
show [18] that

PpðmÞ ¼ TrðΩmρtΩ
†
mEtÞP

mTrðΩmρtΩ
†
mEtÞ

; ð2Þ

where ρt is the system density matrix at time t, conditioned
on previous measurement outcomes, and propagated for-
ward in time until time t, while Et is a matrix which is
propagated backwards in time in a similar manner and
accounts for the time evolution and measurements obtained
after time t. The subscript ·p denotes “past,” and in [18] it
was proposed that, if t is in the past, the pair of matrices
ðρt; EtÞ, rather than only ρt, is the appropriate object to
associate with the state of a quantum system at time t. We
observe that for the case of pure states and projective
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measurements, PpðmÞ in Eq. (2) acquires the form of
Eq. (1) with ρt ¼ jψ iihψ ij and Et ¼ jψfihψfj.
Here, we make use of the full measurement record to

compute the matrices ρt and Et, and analyze how they,
through application of Eq. (2), yield different predictions
for measurements on the system. For imperfect measure-
ment efficiency, nonpure states, and measurements that do
not commute with the system evolution, the predictions
of Eq. (2) vary dramatically from those based on ρ
alone [19,20].
Our experiment, illustrated in Fig. 1(a), is composed of a

superconducting transmon circuit dispersively coupled to a
wave-guide cavity [21,22]. The two lowest energy levels of
the transmon form a qubit with transition frequency
ωq=2π ¼ 4.0033 GHz. The dispersive coupling between
the transmon qubit and the cavity is given by an interaction
Hamiltonian, Hint ¼ −ℏχa†aσz, where ℏ is the reduced
Plank’s constant, a†ðaÞ is the creation (annihilation)
operator for the cavity mode at frequency ωc=2π ¼
6.9914 GHz, χ=2π ¼ −0.425 MHz is the dispersive cou-
pling rate, and σz is the qubit Pauli operator that acts on the
qubit in the energy basis. A microwave tone that probes the
cavity with an average intracavity photon number n̄ ¼
ha†ai thus acquires a qubit-state-dependent phase shift.
Since 2jχj ≪ κ, where κ=2π ¼ 9.88 MHz is the cavity
linewidth, qubit state information is encoded in one
quadrature of the microwave signal. We amplify this
quadrature of the signal with a near-quantum-limited
Josephson parametric amplifier [23]. After further ampli-
fication, the measurement signal is demodulated and
digitized. This setup allows variable strength measurements
of the qubit state characterized by a measurement time scale
τ; by binning the measurement signal in time steps δt ≪ τ
we execute weak measurements of the qubit state [19,24]
while by integrating the measurement signal for a time

T ≫ τ we effectively accumulate weak measurements in a
projective measurement [25] of the qubit in the σz basis.
Our experimental sequences begin with a projective

measurement of the qubit in the σz basis followed by a
variable rotation of the qubit state to prepare the qubit in an
arbitrarily specified initial (nearly) pure state. Following
this preparation, the qubit is subject to continuous rotations
given by HR ¼ ℏΩRσy=2, where ΩR=2π ¼ 0.7 MHz is the
Rabi frequency, and continuous probing given by the
measurement operator

ffiffiffi
k

p
σz, where k¼4χ2n̄=κ¼1=4ητ,

parametrizes the measurement strength (k=2π ¼ 95 kHz)
and η ¼ 0.35 is the quantum measurement efficiency [26].
During probing, we digitize the measurement signal Vt in
time steps δt ¼ 20 ns.
The density matrix associated with a given measurement

signal Vt is obtained by solving the stochastic master
equation [27]:

dρ
dt

¼ −
i
ℏ
½HR; ρ� þ kðσzρσz − ρÞ

þ 2ηkðσzρþ ρσz − 2TrðσzρÞρÞVt: ð3Þ
Here, the first two terms are the standard master equation in
Lindblad form, and the last stochastic term updates the state
based on the measurement result and leads to quantum
trajectory solutions that are different for every repetition of
the experiment.
Let us first recall how the density matrix makes pre-

dictions about the outcome of measurements. In Fig. 1(b),
we consider the probabilities Pð�zÞ for the outcome of the
projective measurement operators Ω�z ¼ ðσz � 1Þ=2. We
prepare the initial state, TrðρiσxÞ≃þ1, by heralding the
ground state and applying a π=2 rotation about the y axis.
We then propagate ρt forward from this initial state, and at
each point in time we display the calculated PðþzÞ ¼
TrðΩþzρtΩ

†
þzÞ [26]. Byperformingprojectivemeasurements

of Ω�z at time t on an ensemble of experiments that have
similar values of ρt (within�0.02) we obtain the correspond-
ing experimental result ~PðþzÞ. We perform this analysis at
different times and we observe close agreement between the
single quantum trajectory predictionPðþzÞ and the observed
~PðþzÞ. Note that the same procedure was used to tomo-
graphically reconstruct and verify the quantum trajectory
associated with the mean value hσzi¼2PðþzÞ−1 in [19,20].
We now turn to the application of measurement data to

retrodict the outcome of an already performed measure-
ment. Equation (2) applies for any set of POVM measure-
ment operators Ωm at time t, and accumulates the
information retrieved from the later probing in the matrix
Et that is propagated backwards in time according to [18]

dE
dt

¼ i
ℏ
½HR; E� þ kðσzEσz − EÞ

þ 2ηkðσzEþ Eσz − 2TrðσzEÞEÞVt−dt: ð4Þ
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FIG. 1 (color online). Time evolution in a monitored system.
(a) Simplified experimental setup consisting of a transmon circuit
coupled to a waveguide cavity. (b) We prepare the qubit in an
initial state [TrðρiσxÞ≃þ1] and propagate ρ forward in time,
which makes accurate predictions about a final projective
measurement (in the σz basis) labeled M. The dashed line is
the prediction based on a single quantum trajectory, and the solid
line is the result from projective measurements on an ensemble of
experiments that have similar values of ρt.
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We assume that no measurements take place beyond the
time T, leading to the final condition ET ¼ Î=2 [18]. If no
measurements take place at all before T, for example,
because η ¼ 0, Eq. (4) yields a solution for EðtÞ that
remains proportional to the identity operator for all times,
and Eq. (2) leads to the conventional expression that
depends only on ρt.
In Fig. 2 we test the retrodictions made by E and Eq. (2).

We examine different initial states, TrðρiσxÞ≃þ1,
TrðρiσyÞ≃þ1, which are prepared by heralding the
ground state and applying π=2 rotations about the y and
−x axes, respectively. We propagate E backwards from ET
to E0 to make a retrodiction about a projective measure-
ment M. Note that while the initial states ρi make
ambiguous predictions about the outcome of M,
PðþzÞ ¼ 1=2, the retrodiction for the outcome of M
becomes biased by the information obtained later and
incorporated in the matrix E.
We verify that the retrodictions are correct by averaging

the outcomes of many measurements M that corresponded
to similar values of E0 to obtain an experimentally derived
probability, ~PðþzÞ. Figure 2(a) displays two sample tra-
jectories for the retrodiction PpðþzÞ along with ~PðþzÞ. As
more information is included, the retrodictions converge to
fixed values. Figure 2(b) displays the results of 3 × 105

experimental tests for the two different initial states ρi. For
both initial states and for a wide range of measurement
outcomes, we are able to tomographically verify the

retrodictions. We also display histograms of the different
values PpðþzÞ for different propagation times of E. The
larger the bias of PpðþzÞ compared to PðþzÞ, the more
often our hindsight enables a correct guess of the outcome
of the projective σz measurement.
Having verified the predictions based on ρ, and the

retrodictions based on E, we now aim to illustrate the
application ofρ andE to use both past and future information
to predict the outcome of a POVM measurement. The
POVM measurement that we consider is simply a short
segment of the measurement signal received between t and
tþ Δt and is given by the measurement operators [27,28],

ΩV ¼ ð2πa2Þ−1=4e½−ðV−σzÞ2=4a2�; ð5Þ

where 1=4a2 ¼ kηΔt. The operators ΩV satisfyR
Ω†

VΩVdV ¼ Î as expected for POVMs, and if we assume
that ρt can be treated as a constant during Δt, the
probability of the measurement yielding a value V is
PðVÞ ¼ TrðΩVρtΩ

†
VÞ, which is the sum of two Gaussian

distributions with variance a2 centered at þ1 and −1 and
weighted by the populations ρ00 and ρ11 of the two qubit
states. The σz term in ΩV causes the back action on the
qubit degree of freedom, ρ → ΩVρΩ

†
V , due to the readout of

the measurement result V. If the effects of damping and the
Rabi drive can be ignored during Δt, the operators, Eq. (5),
also describe a stronger measurement, yielding ultimately
the limit where the two Gaussian distributions are disjoint,
and the readout causes projective back action of the qubit
on one of its σz eigenstates, with probabilities ρ00 and ρ11.
Since the system is also subject to probing and evolution

after t, we now examine what hindsight predictions can be
made for the outcome of the measurement ΩV based on
both earlier and later probing. We must hence evaluate the
conditioned density matrix ρt and the matrix Et and Eq. (2)
yields the outcome probability distribution expressed in
terms of their matrix elements,

PpðVÞ ∝ ρ00E00e½−ðV−1Þ
2=2a2� þ ρ11E11e½−ðVþ1Þ2=2a2�

þ ðρ10E01 þ ρ01E10Þe½−ðV2þ1Þ=2a2�:

We observe that the information obtained after the meas-
urement of interest plays a formally equally important role
as the conditional quantum state represented by ρ.
The predicted mean value is hVip ¼ R

PpðVÞVdV, and
can be evaluated,

hVip ¼ ðρ00E00 − ρ11E11Þ
ρ00E00 þ ρ11E11 þ expð− 1

8a2Þðρ10E01 þ ρ01E10Þ
:

ð6Þ
Here we note that if the measurement is strong, a is small,
and the coherence contribution is canceled in the denom-
inator; yet if the measurement is weak, a single
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FIG. 2 (color). Retrodiction in a monitored system. (a) To test
retrodictions made by E we prepare different states ρi and
conduct a subsequent projective measurement M. We propagate
E backwards from the final state ET ¼ Î=2 to E0 for variable
periods of time (T). This yields a retrodiction (shown as dashed
lines for two different experiments) for the outcome of M. The
solid line, which is based on an ensemble of experiments that
yielded similar values of E0 confirms the retrodictions based on
the single measurement record. (b) We prepare two different
initial states [TrðρiσxÞ≃þ1, red, TrðρiσyÞ≃þ1, blue], and
compare the retrodictions, PpðþzÞ, based on 5 μs of probing,
to the outcomes of measurementsM that yielded similar values of
E0. In the lower panel, we display histograms of PpðþzÞ for
different propagation times. As more of the record is included, the
retrodicted probabilities assume a wider range of values.
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measurement is dominated by noise and reveals only little
information (and causes infinitesimal back action). This is
the situation that leads to so-called weak values. If the
measurement signal is proportional to an observable Â, and
the system is initialized in jψ ii and postselected in state
jψfi, the mean signal is given by [29]

hÂwi ¼ Re

�hψfjÂjψ ii
hψfjψ ii

�
; ð7Þ

which may differ dramatically from the usual expectation
value hψ ijÂjψ ii. Our Eq. (2) has, indeed, been derived by
Wiseman [30] to clarify how weak values are related to
continuous quantum trajectories and correlations in field
measurements.
In Fig. 3, we display the results of our experiments that

test the predictions of Eq. (6). For many iterations of the
experiment we choose a measurement time interval Δt ¼
180 ns that is short enough that the effect of the continuous
Rabi drive is nearly negligible in the time interval
ðt; tþ ΔtÞ. Based on 800 ns of probing before t, we
calculate PðVÞ, and based on 800 ns of probing before
and after the measurement interval, we calculate PpðVÞ for
the result of the measurement. In Fig. 3, we show that both
the conventional and the past quantum state formalism
yield agreement between the predicted mean value and the
measured values. The measured results are noisy, and we
plot the data with the predicted average value along the
horizontal axes, and the measured values along the verti-
cal axes.

While hVi ¼ hσzi, and thus never exceeds 1, a fraction of
the experiments lead to prediction and observation of
values jhVipj > 1. Such anomalous weak values in con-
nection with Eq. (7) have been typically identified with the
intentional postselection of final states with a very small
overlap with the initial state. Surprisingly, continuous
probing leads to similar effects [20]. In Fig. 4 we examine
the states that lead to different weak value predictions. We
represent pairs of ρ and E as connected points on the Bloch
sphere. Indeed, predictions outside the spectral range of the
operator are accompanied by near orthogonality of states
associated with the matrices ρt and EtþΔt. In agreement
with the pure state case, large weak values of σz do not
occur when ρt or EtþΔt are close to the σz eigenstates, but
rather when they are close to opposite σx eigenstates.
In conclusion, we have demonstrated the use of the

quantum trajectory formalism to infer the quantum state of
a superconducting qubit conditioned on the outcome of
continuous measurement. We have also demonstrated a
quantum hindsight effect, where probing of a quantum
system modifies and improves the predictions about mea-
surements already performed in the past. These advances
may be used to improve the state preparation and readout
fidelity for quantum systems and increase their potential for
use as probes [12–17] of time-dependent interactions and
parameter estimation.
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while the qubit transition is driven with a constant Rabi
frequency. Each experiment yields a value V resulting from
the ΩV measurement and predicted mean value hVi (which is
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versus hVi (b) and hVip (c) and find that the conditional average
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