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Exchange interaction is responsible for the stability of elementary boson condensates with respect to
momentum fragmentation. This remains true for composite bosons when single fermion exchanges are
included but spin degrees of freedom are ignored. Here, we show that their inclusion can produce a spin
fragmentation of the dark exciton condensate, i.e., an unpolarized condensate with an equal amount of spin
ðþ2Þ and ð−2Þ excitons not coupled to light. The composite boson many-body formalism allows us to
predict that, for spatially indirect excitons, the condensate polarization switches from unpolarized to fully
polarized when the distance between the layers confining electrons and holes increases. Importantly, the
threshold distance for this switch lies in a regime fully accessible to experiments.

DOI: 10.1103/PhysRevLett.114.090401 PACS numbers: 03.75.Hh, 71.35.−y, 73.21.Fg

Free elementary bosons undergo a quantum phase
transition with a macroscopic amount of bosons condensed
in the same ground state [1] when the boson number gets
larger than NcðTÞ ∝ ðL=λTÞD, where D is the space
dimension, L the sample size, and λT the thermal
de Broglie wavelength, kBT ¼ ℏ2=2mλ2T . Yet, it is surpris-
ing that the k ¼ 0 ground state plays such an important role
compared to states with very small momentum because, in
size L sample, the energy difference betweenN free bosons
with momentum k ¼ 2π=L and with momentum k ¼ 0

scales as N=L2 which is underextensive.
Nozières [2] has pointed out that, when interactions are

included, exchange processes between the two components
of a fragmented condenstate (k;−k) produce an extensive
energy difference. So, Bose-Einstein condensation with all
elementary bosons in the same k ¼ 0 state is not driven by
difference in free particle energy but by exchange inter-
action. For composite bosons made of two fermions [3], we
have shown [4] that this conclusion remains true. This
result is not obvious at first because, in addition to
exchanging simultaneously the two fermions of a
composite boson—which amounts to take the composite
boson as a whole—one also has to consider exchanges of
only one of the two fermions.
Semiconductor excitons, i.e., electron-hole pairs bound

by Coulomb interaction, are particularly attractive to study
Bose-Einstein condensation [5–12]. Indeed, exciton con-
densation is enriched by the carrier spin degrees of freedom
[13]. They allow for a multicomponent condensate similar
to superfluid 3He phases [14], or to more recent spinor
condensates of ultracold atomic Bose gases [15] where
superfluid components with different internal degrees of
freedom coexist and are coherent.

In this Letter, we show how fermion exchange affects the
spin degree of freedom of exciton condensates. They lead to
either a “spin-unfragmented” condensate, i.e., a fully polar-
ized condensate with all excitons having the same spin, or a
“spin-fragmented” condensate with equal populations of the
two accessible exciton spins. We also show that, in the
thermodynamic limit, the unpolarized condensate is quasi-
degenerate with the linearly polarized condensate.
To illustrate the effect of fermion exchanges on standard

Bose-Einstein condensation, spatially indirect excitons are
quite appropriate. Engineered by confining electrons and
holes in two quantum wells [16–18] (see Fig. 1), these
excitons have recently led to remarkable observations
[19–27]. Here, we show that fermion exchanges between
indirect excitons lead to a switch of the condensate polari-
zation from unpolarized to fully polarized. This switch
results from a sign change in the exchange Coulomb
scattering when the spatial separation between electron
and hole layers increases. Importantly, the threshold distance
for this switch lies in the regime where experiments are
performed. So, this polarization switch provides an exper-
imentally accessible signature for exciton condensation.
Elementary boson approach.—In order to understand in

a simple way, that the condensate polarization is controlled
by interaction, we first consider elementary bosons.
(i) Let us start by recalling Nozières’s argument on the

“fragmentation” of Bose-Einstein condensates with respect
to momentum [2]. We consider an elementary boson
Hamiltonian with contact interactions

H̄ ¼
X
q

ϵqB̄
†
qB̄q þ

V
2

X
qi

B̄†
q4B̄

†
q3B̄q2B̄q1δq4þq3;q1þq2

; ð1Þ
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and we look for the energy of the momentum-fragmented
state jΦ̄N;N0 i ¼ ðB̄†

kÞNðB̄†
−kÞN

0 j0i. The H̄ mean value in

jΦ̄N;N0 i with norm
ffiffiffiffiffiffiffiffiffiffiffiffi
N!N0!

p
appears as

hH̄iN;N0 ¼ ϵkðN þ N0Þ
þ V

2
fNðN − 1Þ þ N0ðN0 − 1Þ þ 4NN0g: ð2Þ

The NðN − 1Þ term comes from interactions between two
(k) bosons. TheNN0 term comes from interactions between
(k) and (−k) bosons, with a coefficient 4 instead of 2 due to
the existence of direct and exchange processes (see the
Supplemental Material [28]). This gives the energy differ-
ence between momentum-fragmented and unfragmented
condensates as

hH̄iN;N − hH̄i2N;0 ¼ VN2: ð3Þ

For V > 0, as necessary to avoid density collapse, this
difference is positive and extensive since V scales as one
over the sample volume. A similar result is found [14] for

the coherent state jΦ̄ðLÞ
2N i ¼ ðB̄†

k þ B̄†
−kÞ2N j0i.

The ϵk part of Eq. (2) also shows that the kinetic energy
difference between the fragmented state jΦ̄N;Ni taken for
k ¼ 2π=L and the fully condensed state jΦ̄2N;0i taken for
k ¼ 0, scales as N=L2: it is underextensive and thus
negligible in the thermodynamic limit. So, Bose-Einstein
condensation with all bosons in the same k ¼ 0 state is
driven by interactions, not by free-particle energy.

(ii) To study the condensate spin structure, we consider
elementary bosons with up or down spin and same energy
(taken as zero), their creation operators being B̄†

þ or B̄†
−. Let

V be the scattering independent of spin and W the
scattering between same-spin bosons only. The correspond-
ing Hamiltonian reads as

H̄pol ¼
V
2

X
s¼�

X
s0¼�

B̄†
sB̄

†
s0B̄s0B̄s þ

W
2

X
s¼�

B̄†
sB̄

†
sB̄sB̄s: ð4Þ

A calculation similar to the previous one gives the H̄pol

mean value in jΨ̄N;N0 i ¼ ðB̄†
þÞNðB̄†

−ÞN0 j0i as

hH̄poliN;N0 ¼ V
2
fNðN − 1Þ þ N0ðN0 − 1Þ þ 2NN0g

þW
2
fNðN − 1Þ þ N0ðN0 − 1Þg: ð5Þ

The NN0 term comes from interaction between þ and −
spins, with a coefficient 2 instead of 4 because exchanges
do not exist between þ and − spin bosons. The first
bracket, equal to ðN þ N0ÞðN þ N0 − 1Þ, depends on the
total boson number (N þ N0) but not on the degree of
polarization, as expected since V acts between arbitrary
spins. By contrast, same-spin scatterings lead to an energy
difference between the fully polarized state jΨ̄2N;0i and the
unpolarized state jΨ̄N;Ni equal to

hH̄poli2N;0 − hH̄poliN;N ¼ WN2: ð6Þ

So, forW < 0, the lowest energy state is the polarized state
jΨ̄2N;0i, degenerate with jΨ̄0;2Ni, while for W > 0, it is the
“spin-fragmented” unpolarized state jΨ̄N;Ni.
We can also consider the linearly polarized state

jΨ̄ðLÞ
2N i ¼ ðC̄†

þÞ2N j0i with C̄†
� ¼ ðB̄†

þ � B̄†
−Þ=

ffiffiffi
2

p
. A simple

way to calculate the Hamiltonian mean value in jΨ̄ðLÞ
2N i is to

write H̄pol in terms of C̄†
�. We then find hH̄poliðLÞ2N ¼

ðV=2þW=4Þ2Nð2N − 1Þ from which we get hH̄poliðLÞ2N−
hH̄poliN;N ¼ WN=2. So, forW > 0, the lowest energy state
still is the unpolarized state. However, as WN is under-
extensive, the energy difference goes to zero in the
thermodynamic limit, the unpolarized and linearly polar-
ized states being quasidegenerate.
Composite boson approach.—In the elementary boson

approach, the possibility to have a sign change for same-
spin scattering is not related to any microscopic physics.
The composite boson many-body formalism [3] allows us
to associate same-spin scattering with exchange interaction
and to understand why such a sign change can occur. The
attractive part of this scattering depends on the distance
between electrons and holes. In the case of indirect
excitons, it is possible to decrease this part by increasing
the distance between electron plane and hole plane and to

FIG. 1 (color online). (a) Field-effect device to engineer
spatially indirect excitons in two quantum wells separated by
a distance d: an external voltage Vg is applied. The resulting
internal electric field sets minimum energy states for electrons
and holes (filled and open circles) in different quantum wells
(b) thus yielding spatially indirect excitons. (c)–(e) Shiva dia-
grams representing direct Coulomb scattering between dark
excitons (c), exchange Coulomb scatterings between same spin
(d), and opposite spin (e) dark excitons, ðϵ; ϵ0Þ ¼ �1.
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end with the repulsive electron-electron and hole-hole
contributions only.
When taking composite bosons as elementary particles,

we set to zero “deviation operators” Dmi ¼ ½Bm; B
†
i � − δm;i.

As a result, the effects of fermion exchange in the absence
of fermion-fermion interaction are omitted. Although it is
commonly believed that theDmi operators can be neglected
at small density, this is not correct: they control fermion
exchanges and through them all semiconductor nonlinear-
ities [3].
Motivated by experiments performed in two-dimensional

zinc-blende heterostructures, we here concentrate on this
class of materials. The lowest energy manifold then consists
of four spin states: two optically active states (�1) called
“bright” since they are coupled to σ� photons and two
optically inactive states (�2) called “dark.” These four states
follow from the four different ways (�1=2) spin electrons
and (�3=2) “spin” holes can be bound by Coulomb
attraction. We have shown that dark excitons have a lower
energy than bright excitons for the very same reason that
they are not coupled to photon [29]. As a result, exciton
condensation has to occur in the lowest energy dark exciton
subspace [30] made of ð�2Þ states.
We study the polarization of the exciton condensate

through the mean value of the electron-hole Hamiltonian
H in the partially polarized dark exciton state jΨN;N0 i ¼
ðB†

0;2ÞNðB†
0;−2ÞN

0 j0i, namely

ΔN;N0 ¼ hΨN;N0 jH − ðN þ N0ÞE0jΨN;N0 i
hΨN;N0 jΨN;N0 i : ð7Þ

B†
0;�2 creates a ground-state dark exciton with center-of-

mass momentum Q ¼ 0, relative motion index ν0, and

energy E0. We will also consider ΔðLÞ
N for the coherent

linearly polarized state jΨðLÞ
N i¼ðB†

0;2þB†
0;−2ÞN j0i. It reads

as ΔN;N0 with jΨN;N0 i replaced by jΨðLÞ
N i.

(i) Two excitons: To study carrier exchanges in a
simple way, let us start with two excitons and compare the
energy of the fully polarized state jΨ2;0i to the one of the

unpolarized state jΨ1;1i and the linearlypolarized state jΨðLÞ
2 i.

The composite boson many-body formalism leads to (see
the Supplemental Material [28] for details)

Δ1;1 ¼
P

mnh0jB0;−2B0;2B
†
m;2B

†
n;−2j0iξðn0m0

Þ
h0jB0;−2B0;2B

†
0;2B

†
0;−2j0i

¼ ξð00
00
Þ;

Δ2;0 ¼
2ξð00

00
Þ − 2ξexchð00

00
Þ

2 − 2λð00
00
Þ : ð8Þ

ξðnjmiÞ corresponds to direct Coulomb scattering between two
excitons in states (i; j) ending in states ðm; nÞ, the m and i
excitons being constructed on the same electron and the
same hole, while in exchange Coulomb scattering, their
holes are different (see Fig. 1). The dimensionless “Pauli

scatterings” λ for fermion exchange in the absence of
Coulomb process (see Fig. 1) enter the norm of the state
when carrier exchange is possible as in the norm of jΨ2;0i.
Δ1;1 only contains direct scatterings because ðþ2Þ and ð−2Þ
excitons have different spins whereas Δ2;0 also contains
carrier exchange. Since ðξ; ξexch; λÞ scale as ðaX=LÞD, where
aX is the exciton Bohr radius, the λ part in the denominators
can be neglected at first order in ðaX=LÞD. We then see that
Δ1;1 and Δ2;0 have the same amount of direct scatterings ξ
but a different amount of ξexch. The above results used for
jΨðLÞ

2 i ¼ jΨ2;0i þ jΨ0;2i þ 2jΨ1;1i yield

ΔðLÞ
2 ¼ 8ξð00

00
Þ − 4ξexchð00

00
Þ

8 − 4λð00
00
Þ ð9Þ

with the same amount of ξ as Δ1;1 and Δ2;0.
As shown below, in the case of spatially indirect excitons,

ξexch changes from negative to positive when the distance
between carrier planes increases. So, the lowest energy
state is the “spin-fragmented" unpolarized state jΦ1;1i for
−ξexch > 0 but ends up by being the fully polarized state
jΦ2;0i or jΦ0;2i at large distance when −ξexch < 0. This
conclusion remains true for N ≫ 2, except that the energy
difference between unpolarized and linearly polarized states
is underextensive and so negligible in large sample.
(ii) Large exciton number: A rule of the thumb based on

dimensional arguments gives the interaction term for N
excitons linear in density, by putting NðN − 1Þ=2 in front
of the interaction term for two excitons. As scatterings
between two excitons scale as ðaX=LÞD, this rule gives the
interaction term for N excitons in NðN − 1ÞðaX=LÞD ∝ Nn
where n ¼ N=LD is the exciton density. In the same way,
scatterings between (mþ 1) excitons scale as ðaX=LÞmD;
they appear with a Nmþ1 prefactor which comes from the
ðNmþ1Þ ways to select ðmþ 1Þ excitons among N. So, they
bring a contribution in Nnm. Consequently, effects at first
order in density, as the ones we here consider, come from
processes involving two excitons among N.
Exchange processes between N same-spin ground-state

excitons change their normalization factor from
ffiffiffiffiffiffi
N!

p
toffiffiffiffiffiffiffiffiffiffiffiffi

N!FN
p

with FN exponentially small [31] since it decreases
with exciton number as e−Nη, where η ¼ NðaX=LÞD is the
dimensionless many-body parameter associated with den-
sity. Yet, this exponential damping does not have dramatic
consequences because FN ultimately appears through ratios
like FN−1=FN ≃ 1þOðηÞ which do not affect physical
quantities at first order in density. By contrast, exchange
processes between opposite-spin dark excitons bring them
to the higher energy bright states [see Fig 1(e)]; so, these
exchanges do not enter the Hamiltonian mean value in the
dark exciton subspace. As B†

0;2 and B†
0;−2 are made of

different carriers, B0;2B
†
0;−2j0i ¼ 0; so

hΨN;N0 jΨN;N0 i ¼ hΨN;0jΨN;0ihΨ0;N0 jΨ0;N0 i
¼ ðN!FNÞðN0!FN0 Þ; ð10Þ
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while from Coulomb processes involving 2 excitons among
N þ N0, we get (see the Supplemental Material [28])

ΔN;N0 ≃ ξðXN þ XN0 þ YN;N0 Þ − ξexchðXN þ XN0 Þ ð11Þ

with ξ ¼ ξð00
00
Þ and ξexch=ξexchð0000Þ. The N excitons ðþ2Þ

can have direct and exchange Coulomb scatterings. From
the number of ways to choose two excitons ðþ2Þ among N,
these same-spin processes appear in ΔN;N0 with a prefactor
XN ≃ NðN − 1Þ=2þOðηÞ. By contrast, the N excitons
ðþ2Þ have direct Coulomb scatterings, but no exchange
with the N0 excitons ð−2Þ. So, opposite-spin processes
appear in ΔN;N0 with a prefactor YN;N0 ≃ NN0 þOðηÞ.
For a fully polarized condensate, this gives

Δ2N;0 ≃ 2Nð2N − 1Þ
2

ðξ − ξexchÞ; ð12Þ

while, for unpolarized condensate, we find

ΔN;N ≃ 2
NðN − 1Þ

2
ðξ − ξexchÞ þ N2ξ

≃ Nð2N − 1Þξ − NðN − 1Þξexch: ð13Þ

While ΔN;N and Δ2N;0 have the same amount of direct
Coulomb scatterings, as reasonable since direct processes
exist whatever the spins are, ΔN;N contains less exchanges,
Δ2N;0−ΔN;N≃−N2ξexch. So, the “spin-fragmented” unpo-
larized state jΨN;Ni has the lowest energy for −ξexch > 0,
while the fully polarized state jΨ2N;0i, degenerate with
jΨ0;2Ni, is the lowest energy state for −ξexch < 0.
We can also consider the linearly polarized state

jΨðLÞ
2N i ¼ ðB†

0;2 þ B†
0;−2Þ2N j0i ¼

X2N
p¼0

�
2N
p

�
jΨ2N−p;pi:

ð14Þ

To calculate the Hamiltonian mean value in this linearly
polarized state is farmore demanding, due to the large number
of different spin states.We can however note that, for largeN,
ð2Np Þ is very much peaked at ð2NN Þ; so (see the Supplemental

Material [28]), ΔðLÞ
2N ≃ ΔN;N , and the unpolarized state

jΨN;Ni, which has the lowest energy for −ξexch > 0, is

quasidegenerate with the linearly polarized state jΨðLÞ
2N i.

We have eliminated exchange Coulomb processes
between opposite spin dark excitons because they transfer
them into the higher energy bright exciton subspace. Since
the splitting between bright and dark states δBD does not
depend on sample size, the energy increase Nδbd for N
excitons turning bright is extensive by contrast with N
excitons having a 2π=L momentum. So, for macroscopic
samples, in contrast with the momentum fragmentation of
elementary boson condensate, no additional interactions are

required to drive exciton condensation toward dark states.
Yet, when exciton density increases, exchange Coulomb
processes cannot be neglected anymore.We have shown [12]
that, above a density threshold, a bright component appears
in the exciton condensate which makes it “gray”; its study
becomes possible through the luminescence of its bright part.
Spatially indirect excitons.—Long-lived indirect exci-

tons [16] with electrons and holes in spatially separated 2D
layers [see Fig. 1(a)], are among the most promising
candidates to study exciton condensation. By comparing
Eqs. (5), (12), and (13), we are led to associate scatterings
between arbitrary spins with direct Coulomb processes,
V ¼ ξ, and scattering between same-spin excitons with
exchange Coulomb processes, W ¼ −ξexch. For carrier
coordinates ðre; dÞ and ðrh; 0Þ, where d is the distance
between the planes confining electrons and holes and
(re; rh) are 2D vectors along these planes, the direct
Coulomb scattering between two ground-state excitons
(Q ¼ 0; ν0), read from Fig. 1(c), is given by [3]

ξd ¼
Z

fdrgjhdþ re1 − rh1 jν0ihdþ re2 − rh2 jν0ij2

×

�
e2

jre1 − re2j
þ e2

jrh1 − rh2j
−

e2

jdþ re1 − rh2 j

−
e2

jdþ re2 − rh1 j
�
: ð15Þ

ξd, equal to zero for d ¼ 0 as seen by exchanging ðre1 ; rh1Þ,
stays positive for finite d. The exchange Coulomb scatter-
ing ξexchd between two same-spin excitons [see Fig. 1(d)]
reads as ξd except for the wave function part which is
replaced by

hν0jdþ re1 − rh2ihν0jdþ re2 − rh1i
× hdþ re1 − rh1 jν0ihdþ re2 − rh2 jν0i: ð16Þ

It has been shown [3,32,33] that ξexchd¼0 ¼ ξDR3D
X ða3DX =LÞD

with ðR3D
X ; a3DX Þ being the 3D exciton Rydberg and

Bohr radius and ξD, a numerical factor equal to −ð8π −
315π3=512Þ≃ −6.06 in 2D. When d increases, the electron-
hole part of the bracket in Eq. (15) goes to zero. Since the
wave function part stays positive, ξexchd becomes positive for
d larger than a threshold value d� which is numerically found
to be d� ≃ 0.5a2DX . Accordingly, for d < d�, W ¼ −ξexchd is
positive and the lowest energy state is the “spin-fragmented"
unpolarized state jΨN;Ni, while for d > d�, the exchange
Coulomb scattering is positive and the lowest energy state is
fully polarized, either jΨ2N;0i or jΨ0;2Ni. Most experimental
works are performed in a regime where d ∼ 10 nm [19–27].
This lies in the range of the threshold distance d� for a switch
of the condensate polarization. So, observation of the present
prediction is fully accessible to experiments [34]. In par-
ticular, the observation by Aichmayr et al. [35] of the
cancellation of exchange interaction in a double quantum
well setup is quite interesting. Although direct comparison
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with our work is not easy, in particular because our
numerical calculation uses a purely 2D model, their exper-
imental result falls in a range quite compatible with our
threshold value.
The physical origin of this polarization switch, directly

linked to fermion exchange, contrasts with recent theoreti-
cal studies [36–39] which concentrate on the role played by
spin-orbit interaction. A similar polarization switch has
already been reported [9] using the BCS-like Keldysh-
Kopaev Green function approach appropriate to dense
electron-hole gas—which makes direct comparison with
our work difficult. The spin dependence of the resulting
exciton effective interaction is associated with large wave
function overlap. By contrast, overlap is not responsible for
the sign change of ξexchd we find. Moreover, dark excitons
are not considered while they are required to eliminate
exchange interaction between opposite-spin excitons, this
elimination being responsible for the polarization switch
we predict. Finally, the threshold found in Ref. [9] is much
smaller than the one we predict.
Conclusion.—We have shown how fermion exchanges

shape the spin structure of exciton condensates. They
enrich Bose-Einstein condensation, as illustrated by spa-
tially indirect excitons for which fermion exchanges lead
to a switch of the condensate polarization from “spin-
fragmented” unpolarized to fully polarized when the
distance between confined carriers increases. Our findings
may well relate to the low degree of polarization recently
observed in experiments reporting a condensate of dark
excitons [27].
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