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Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to
triggering processes. However, natural earthquake fault systems are composed of a variety of different
geometries and materials and the associated heterogeneity in physical properties can cause a variety of
spatial and temporal behaviors. This raises the question of how the triggering process and the structure
interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the
Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range inter-
actions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity
cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied
stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in
temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In
addition, we observe sequences of activity that start with a gradually accelerating number of larger events
(foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work
provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly
influenced by the underlying physical properties and are not solely the result of a simple cascade
mechanism.
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Understanding the dynamics of seismic activity is
fundamental to investigation of the earthquake process.
Simple models of statistical fracture have been used to test
many of the typical assumptions and effective parameters
inherent in the complicated dynamics of the earthquake
fault system and their relative variability [1–9]. Most of
these models assume a spatially homogeneous fault and
short-range stress transfer. However, inhomogeneity plays
an important role in the spatial and temporal behavior of an
earthquake fault [10]. While a number of Olami-Feder-
Christensen (OFC) models with nearest-neighbor stress
transfer have been expanded to include inhomogeneity,
generally by varying individual parameters along the fault
plane [11–17], there have been no investigations of the
effect of large-scale inhomogeneities in long-range models.
Stress transfer in natural earthquake faults is elastic and, as

a result, OFC models with long-range stress transfer produce
more realistic representations [18,19]. Moreover, it has been
shown in several studies that the physics of long-range
models is significantly different from that of short-range
stress transfer models (see the Supplemental Material [20]).
For example, OFC models with short-range stress transfer
are not in equilibrium, while for infinite-range stress transfer,
the model is in equilibrium [19,35]. In addition, if the stress
transfer range becomes large enough, it is reasonable to
approximate the model by a mean-field theory [19].
A long-standing problem in understanding the statis-

tical distribution of earthquakes is how to reconcile

Gutenberg-Richter (GR) scaling, which suggests the pres-
ence of a critical point, with the existence of foreshocks,
aftershocks, and quasiperiodic large events. Proposed
mechanisms for understanding GR scaling, including
self-organized critical phenomena (SOC) and cascade
mechanisms, do not generate the clustering of foreshocks
and aftershocks in conjunction with quasiperiodic large
events. The approach presented here is to modify a model
that explains GR scaling [19] by adding structural asperities
which leave that scaling intact but produce clustering of
foreshocks and aftershocks as well as large, regularly
recurring events (detailed discussion of modified GR
scaling is included in the Supplemental Material [20]).
Inhomogeneities in the form of stress-relieving micro-

cracks have been incorporated into long-range OFC [10,19]
models, resulting in a better understanding of GR scaling
[36]. In addition, inhomogeneities have been introduced
into fully elastic models resulting in either power-law
statistics of event sizes or a separate distribution combined
with large, system-size events [37]. However, to date, none
of these approaches has reproduced both the temporal
clustering and the complete magnitude-frequency distribu-
tion scaling regime that are primary features of natural
seismicity and a critical component in the assessment of
earthquake hazard. Motivated by the structure of natural
faults, we introduce heterogeneity in the form of asperities
into the OFC model with long-range stress transfer. The
introduction of these spatial heterogeneities produces
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temporal clustering similar to that seen in natural faults,
including aftershocks, foreshocks, and large events with
constant return period.
Spatial and temporal clustering has long been recognized

in seismicity data, and significant efforts have focused on
those that occur in the same general region as the main shock
and immediately before (foreshocks) or immediately after
(aftershocks) its occurrence [38–43]. Aftershocks occur
close to their triggering main shocks and the aftershock
rate generally decays with time, following the power-law
relation known as the modified Omori law [40,42]. On the
other hand, while precursory seismic activity, or foreshocks,
have been recorded before a number of large events, their
signal is much more difficult to observe [44–48].
One particular foreshock pattern, accelerating moment

release (AMR) [45,47,49–52] is defined by the equation
εðtÞ ¼ Aþ Bðtf − tÞm. εðtÞ has been interpreted as either
the accumulated seismic moment or Benioff strain release
within a specified region, from some origin time t0 to
time t. A is a constant that depends on the background level
of activity, tf is the time of the main shock, B is negative,
andm is between 0.3 and 0.7. Ben-Zion et al. [53] analyzed
the deformation preceding large earthquakes and obtained a
1D power-law time-to-failure AMR relationship before
large events when the seismicity had broad frequency-size
statistics, consistent with observed seismic activation
before some large earthquakes [54,55].
The epidemic-type aftershock sequences (ETAS) model

[56,57] is a triggering model used to simulate natural
foreshock and aftershock sequences. It is based on the
concept that every event, regardless of its size, increases the
probability of later events. In the ETAS model, main shocks
trigger aftershocks, including those with magnitudes larger
than themselves. If the largest event is triggered by smaller
events, these are classified as foreshocks. While the ETAS
model can replicate many clustering features seen in natural
seismicity, recent work suggests that these triggering models
may not fully explain the foreshock–main-shock–aftershock
process and that other mechanisms may be important
[47,58,59]. For example, Chen and Shearer [60] studied
foreshock sequences for M > 7 earthquakes in California
and determined that they behaved more like swarms initiated
by aseismic transients rather than triggered cascades or a
nucleation process. These sequences occurred in areas of
significant fault-zone complexity, highlighting the impor-
tance of heterogeneity in the clustering process.
Our model is a two-dimensional cellular automaton with

periodic boundary conditions based on the OFC [8] and the
Rundle-Jackson-Brown (RJB) [3,7] models that incorpo-
rates heterogeneity into the lattice. Every site can redis-
tribute released stress to all z neighbors within a radius, or
stress interaction range, R. A homogeneous residual stress
σr is assigned to all the sites in the lattice. To impose spatial
inhomogeneity on the lattice, two sets of failure thresholds
are introduced; regular sites with a failure threshold of σf

and asperity sites with a significantly higher failure thresh-
old (σfðasperityÞ ¼ σf þ Δσf).
Initially, an internal stress variable σjðtÞ is randomly

distributed to each site; the stress on every site falls between
the residual stress and failure stress thresholds [σr <
σiðt ¼ 0Þ < σf]. At t ¼ 0, no sites will have σi > σf.
We use the so-called zero velocity limit [8,61,62] to
simulate the increase in stress associated with the dynamics
of plate tectonics. The lattice is searched for the site that is
closest to failure; i.e., the site with minimum (σf − σi).
Then, this amount of stress (σf − σi) is added to each site
such that the stress on at least one site is equal to its failure
threshold. The site fails and some fraction of its stress,
given by α½σf − ðσr � ηÞ�, is dissipated from the system. α
is the dissipation parameter (0 < α ≤ 1) which quantifies
the portion of stress dissipated from the failed site and η is
randomly distributed noise. Stress on the failed site is
lowered to (σr � η) and the remaining stress is distributed
to its predefined z neighbors. After the first site failure, all
neighbors are searched to determine if the added stress
caused additional failures. If so, the procedure is repeated.
If not, the time step, known as the plate update (pu),
increases by unity and the lattice is searched again for the
site closest to failure [i.e., with the smallest (σf − σi)]. The
size of each event is calculated from the total number of
failures resulting from the initial failure. Stress is dissipated
from the system both at regular lattice sites and through
asperity sites placed randomly throughout the system.
However, asperity sites fail less frequently than the regular
sites, providing a time-dependent source and sink of stress:
storing dissipated stress until an asperity failure releases it
back into the system. Addition of these large failure
threshold heterogeneities, or localized stress accumulators,
results in a rich pattern of temporal clustering that includes
the occurrence of large events with constant return period
(here designated characteristic events), foreshocks, and
aftershocks.
Here we investigate a system with 1% of randomly

distributed asperity sites in a two-dimensional lattice of
linear size L ¼ 256, R ¼ 16, and periodic boundary con-
ditions. Every failed site directly transfers stress to z ¼
1088 neighbors. The homogeneous failure threshold for the
regular sites is σf ¼ 2.0, homogeneous residual stress for
the entire lattice is σr ¼ 1.0, with random uniform noise
distribution of η ¼ ½−0.1;þ0.1�. The failure threshold for
asperity sites is designated σfðasperityÞ ¼ σf þ 10.
We compare our inhomogeneous model and a homo-

geneous model with no asperity sites in Fig. 1. Time series
of 6 × 105 plate updates and frequency distributions of
10∧7 plate update are shown for three different values of
stress dissipation parameter α. The first diagram (i) in each
set is the time series for the heterogeneous model with 1%
of asperity sites. Time steps in which an asperity site breaks
are highlighted with a gray background. The second
diagram (ii) is the time series for the homogeneous model
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(no asperity sites). Comparison between the frequency
distribution for different values of α, with and without
asperities, is shown in Fig. 1(d). For the 1% asperity model,
the lattice does not break randomly in time, despite the
random spatial distribution of asperities. The asperity model
produces large, repeating events that recur at constant
intervals. Those characteristic events occur less frequently
as α, the stress dissipation, increases. The distributions also
confirm that, as α increases, the largest events become
smaller, because higher stress dissipation suppresses large
events [19]. The 1% asperity model generates larger events
compared to the homogeneous model.
In Fig. 2, we isolate a single activation sequence for

α ¼ 0.2 and α ¼ 0.4 [Figs. 2(a) and 2(b), respectively].
Temporal clustering is clearly visible [Figs. 2(a) and 2(b),
i and ii], starting with a gradually increasing number of
larger events (foreshocks) and ending with a tail of decreas-
ing activity (aftershocks). Results for α ¼ 0.6 (not shown)
are qualitatively similar. The temporal clustering is primarily
a result of the asperities. Increased α again reduces the size of
the largest events [Figs. 2(a) and 2(b), iii]. In addition, the
increasing number of events prior to the main shock is
analogous to the increased rate of activity, or AMR, observed
before some large earthquakes [Fig. 2(a) and 2(b), iv].
Because changes in the bin length strongly affect the slope in
Figs. 2(a)-iv and 2(b)-iv, additional study is needed for
proper comparison with naturally occurring earthquake
sequences; however, increased stress dissipation appears
to increase the steepness of the AMR curve [Fig. 2(a)
and 2(b), iv]. This is the first time this complete set of
phenomena has been observed in the OFC and RJB class of
models.

While most theoretical models of earthquake seismicity
such as ETAS presuppose that all events are governed by
the same physics, recent careful analysis has suggested that
variation in foreshock-aftershock rates may be dependent
on the local or regional rheology. Enescu et al. [59]
demonstrated that swarm-type seismic activity with higher
foreshock rates occurred in areas of California with
relatively high surface-heat flow, while more typical
sequences occurred in regions with lower heat flow.
McGuire et al. [63] analyzed hydroacoustic data along
East Pacific Rise faults and identified sequences with
higher foreshock rates and lower aftershock rates than
previously observed in continental transform faults, or a
relatively high ratio of foreshocks to aftershocks.
We performed a similar analysis for a swarm in the

southern Eyjafjarðaráll graben off the north coast of Iceland,
late summer of 2012 [Fig. 3(a)]. Of the fifteen largest events
(M ≥ 2.5), eight were associated with foreshock and/or
aftershock clusters that could be distinguished from the
background activity. The spatiotemporal distribution of those
foreshock and aftershock events, relative to their respective
main shocks, is plotted in Fig. 3(b), while the GR relationship
and AMR plot are shown in Figs. 3(c) and 3(d), respectively.
The similarity to Fig. 2 provides evidence for natural cases in
which foreshock abundance is of the same order of magni-
tude and duration as aftershock sequences. Although the
spatial clustering seen in Fig. 3(b) is not reproduced in the
model (Fig. 2-ii), ongoing work suggests that this is a result
of the random spatial distribution of asperities.

FIG. 1 (color online). Time series of events (number of failed
sites) over 6 × 105 plate updates for: (a) α ¼ 0.6, (b) α ¼ 0.4, and
(c) α ¼ 0.2; (i) 1% of randomly distributed asperity sites (shaded
background are times when an asperity site breaks); (ii) homo-
geneous model with the same conditions as (i). (d) Comparison
between frequency distributions nðsÞ, with and without 1% of
randomly distributed asperity sites, for three values of α. Slope of
the linear fit to ða-iiiÞ ¼ 2.00, ðb-iiiÞ ¼ 1.85, and ðc-iiiÞ ¼ 1.65.
(e) Close-up of the box in (d).

FIG. 2 (color online). (a-i) Number of failed sites at each time
step (shaded background as in Fig. 1) for α ¼ 0.2. Time is binned
into coarse-grained units of Δt ¼ 500 pu. (a-ii) Distance of each
event from the largest event in the sequence (main shock, red
cross). (a-iii) Distribution of events, nðsÞ, during the period (a-i).
Slope for the straight line fit is 1.6. (a-iv) Cumulative number of
events greater than the defined threshold versus coarse-grained
time. (b-i, ii, iii, iv) as in (a) for stress dissipation of 40%
(α ¼ 0.4). Slope of the linear fit to ðb-iiiÞ is 1.85.
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In order to better understand how the relative production
of foreshocks and aftershocks is governed by the model
parameters, we investigated the length of the average
foreshock and aftershock periods for different values of
α in our model. In general, lower dissipation favors more
frequent, larger events and higher dissipation suppresses
the large events [Fig. 1(d)]. Stress dissipation also appears
to have an effect on the relative length of those foreshock
sequences. In Fig. 4, we plot the relative length of the
foreshock and aftershock sequences, normalized by the total
time period of each sequence. For low α values, the energy,
or stress, available for foreshock activity is greater and
initially results in an increased number of foreshocks,
breaking more asperities. Once the main shock occurs, there
are fewer unbroken sites available for the occurrence of
aftershocks. As a result, the aftershock sequence is shorter.
On the other hand, in higher dissipation systems, it is not
until the occurrence of the largest event, the main shock, that
enough stress is injected into the surrounding sites to initiate
failure of large numbers of additional sites as aftershocks.
High dissipation results in shorter foreshock sequences and
relatively longer aftershock sequences (Fig. 4). The average
number of events is lower in models with higher α, but the
length of the total activity period also appears to be related
to α. Because higher values of α suppress large events, more
plate updates are required to fail all the asperities in higher
dissipation models.
In summary, we present a long-range OFC model with

randomly distributed asperities. While the asperities do not
change the GR relation proposed in Ref. [19], this

heterogeneity introduces temporal clustering similar to that
seen in natural fault systems. Unlike previous versions of
the OFC model, we observe quasiperiodic characteristic
earthquake sequences associated with periods of activity
which start with gradually increasing numbers of larger
events, or foreshocks, and end with a tail of decreasing
activity, or aftershocks (Fig. 2). The relative length of the
foreshock and aftershock sequences varies, as observed in
different tectonic regions (Fig. 3). The length of the
foreshock and aftershock activation is related to one or
more controlling parameters of the model, including the
stress dissipation (Fig. 4), providing a potential explanation
for the observation that certain tectonic regimes, such as
midocean ridges, have measurable foreshock sequences,
while others, such as crustal transform faults, produce few
foreshocks.
The results from this simple model suggest that asperities

are partly responsible for the time-dependent behavior
observed in natural earthquake fault systems. In the model,
asperities act as stress reservoirs that remove and store stress
until their failure threshold is reached. Once that threshold is
reached, the asperity failure releases a large amount of stress
into the system over a short time. This often results in a very
large event. Between asperity failures, the model behaves as
if it is an OFC model without asperities but with large
dissipation, since the stress is removed and stored in the
asperities, resulting in attenuated GR scaling and large,
quasiperiodic events. The smaller stochastic, GR-scaling
events which result from the triggering process have a small
impact on the event statistics due to the large separation of
failure thresholds. This interplay of triggering and structure
provides new insights into the variation in the statistical
event distributions from one model, or fault, to another. That
variation is governed by the distribution and strength of the
asperities.
The implication of our results is that the spatial and

temporal patterns observed in natural seismicity are con-
trolled by the fault structure as well as a triggering process.
A fault with strong asperities will produce large quasiperi-
odic events combined with a small GR-scaling region. If
there are no asperities, then the dominant process will be

FIG. 3 (color online). (a) Seismicity for swarm event, southern
Eyjafjarðaráll graben, Aug 20, 2012 through March 25, 2013.
Most activity occurred between the graben and the Húsavík-
Flatey fault. (b) Spatiotemporal distribution of seismicity asso-
ciated with the twelve largest events in the sequence in (a). Note
that earthquake magnitude is logarithmic, where every unit
increase is equivalent to approximately 32 times the energy
increase. (c) GR distribution for the longest single sequence in the
swarm, M ≥ Mc ¼ 2.0, Mc is minimum magnitude of complete-
ness. (d) Cumulative number of events greater than Mc versus
time relative to the main shock (star, M ¼ 4.76). Data collected
by the SIL network was provided by the Icelandic Met Office
(en.vedur.is). GMT software [64] was used to create the figures.

FIG. 4 (color online). The average time period associated with
foreshocks and aftershocks as a function of α, 1% of randomly
distributed asperity sites. FT denotes foreshock time; AT denotes
aftershock time; the red data show FT=ðFTþ ATÞ; the blue data
show AT=ðFTþ ATÞ; ðFTþ ATÞ represents the total sequence.
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triggering and the fault will produce a large GR-scaling
regime. This interpretation allows for a smooth transition
between those two modes, as is seen in many natural fault
systems. This hypothesis can be tested. We should be able
to differentiate between faults with strong asperities and
those with weaker or fewer weaker asperities, based upon
their magnitude-frequency distribution.
This work also demonstrates that it is possible to link the

underlying physical properties to measurable parameters of
the spatial and temporal patterns observed in natural
seismicity, such as Omori exponent, stress drop, or interevent
time. If spatial heterogeneity affects the spatiotemporal
behavior of earthquake sequences, including earthquake
return period and precursory activity (foreshocks), then it
should be possible to link stress dissipation and asperity
distribution to the foreshock-aftershock duration and inter-
event times, potentially allowing us to improve their predict-
ability. The fact that the precursory patterns in earthquake
fault networks are controlled by these spatial heterogeneities
provides a new paradigm with which to investigate and
quantify the relationship between fault structure, spatiotem-
poral clustering, and earthquake predictability.
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