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In neural circuits, statistical connectivity rules strongly depend on cell-type identity. We study dynamics
of neural networks with cell-type-specific connectivity by extending the dynamic mean-field method and
find that these networks exhibit a phase transition between silent and chaotic activity. By analyzing the
locus of this transition, we derive a new result in random matrix theory: the spectral radius of a random
connectivity matrix with block-structured variances. We apply our results to show how a small group of
hyperexcitable neurons within the network can significantly increase the network’s computational capacity
by bringing it into the chaotic regime.
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The theory of random matrices has diverse applications
in nuclear [1] and solid-state [2,3] physics, number theory
and statistics [4], and models of neural networks [5–8]. The
increasing use of Boolean networks to model gene regu-
latory networks [9–11] suggests that random matrix theory
may advance our understanding of those biological systems
as well. Most existing theoretical results pertain to matrices
with values drawn from a single distribution, corresponding
to randomly connected networks with a single connectivity
rule and cell type. Recent experimental studies describe in
increasing detail the heterogeneous structure of biological
networks where connection probability depends strongly
on cell type [12–17]. As a step towards bridging this gap
between theory and experiment, here we extend mean-field
methods used to analyze conventional randomly connected
networks to networks with multiple cell types and allow for
cell-type-dependent connectivity rules. We focus here on
neural networks.
Randomly connected networks of one cell type were

shown to have two important properties. First, they
undergo a phase transition from silent to chaotic activity
as the variance of connection strength is increased [7,8].
Second, such networks reach optimal computational
capacity near the critical point [18,19] in a weakly chaotic
regime. We find both phenomena in networks with
multiple cell types. Importantly, the effective gain of
multiple cell-type networks deviates strongly from
predictions obtained by averaging across the cell types,
and in many cases these networks show greater computa-
tional capacity compared to networks with cell-type-
independent connectivity.
The starting point for our analysis of recurrent activity

in neural networks is a firing-rate model where the
activation xiðtÞ of the ith neuron determines its firing rate
ϕiðtÞ through a nonlinear function ϕiðtÞ ¼ tanhðxiÞ. The

activation of the ith neuron depends on the firing rate of all
N neurons in the network:

_xiðtÞ ¼ −xiðtÞ þ
XN
j¼1

JijϕjðtÞ; ð1Þ

where Jij describes the connection weight from neuron j to
i. Previous work [7] considered a recurrent random network
where all connections are drawn from the same distribution.
There, the matrix elements were drawn from a Gaussian
distribution with mean zero and variance g2=N, where g
defines the average synaptic gain in the network.
According to Girko’s circular law, the spectral density of
the random matrix J in this case is uniform on a disk with
radius g [6,20,21]. When the real part of some of the
eigenvalues of J exceeds 1, the quiescent state xiðtÞ ¼ 0
becomes unstable and the network becomes chaotic [7].
Thus, for networks with one cell type the transition to
chaotic dynamics occurs when g ¼ 1. The chaotic dynam-
ics persist even in the presence of noise, but the critical
point gcrit shifts to values > 1, with gcrit ¼ 1 − σ2 log σ2 for
small noise intensities σ2 and gcrit ¼

ffiffiffiffiffiffiffiffi
π=2

p
σ for large

noise [8].
We now consider networks with D cell types, each

with a fraction αd of neurons in it. The mean connection
weight is hJiji ¼ 0. The variances NhJ2iji ¼ g2cidj depend

on the cell type of the input (c) and output (d) neurons,
where ci denotes the group neuron i belongs to. In what
follows, indices i; j ¼ 1;…; N and c; d ¼ 1;…; D corre-
spond to single neurons and neuron groups, respectively.
Averages over realizations of J are denoted by h·i.
It is convenient to represent the connectivity structure
using a synaptic gain matrix G. Its elements Gij ¼
gcidj are arranged in D2 blocks of sizes Nαc × Nαd
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[Figs. 1(a)–1(c), top insets]. The mean synaptic gain ḡ
is given by N−1ðPN

i;j¼1G
2
ijÞ1=2 ¼ ðPD

c;d¼1 αcαdg
2
cdÞ1=2.

Defining J0ij ∼N ð0; N−1Þ (but see Ref. [22] for discussion
of non-Gaussian entries) and nd ¼ N

P
d
c¼1 αc allows us to

rewrite Eq. (1) in a form that emphasizes the separate
contributions from each group to a neuron:

_xi ¼ −xi þ
XD
d¼1

gcid
Xnd

j¼nd−1þ1

J0ijϕjðtÞ: ð2Þ

We use the dynamic mean-field approach [5,7,25] to
study the network behavior in the N → ∞ limit. Averaging
Eq. (2) over the ensemble from which J is drawn implies
that only neurons that belong to the same group are
statistically identical. Therefore, to represent the network

behavior it is enough to look at the activities ξdðtÞ of D
representative neurons and their inputs ηdðtÞ.
The stochastic mean-field variables ξ and η will approxi-

mate the activities and inputs in the full N-dimensional
network provided that they satisfy the dynamic equation

_ξdðtÞ ¼ −ξdðtÞ þ ηdðtÞ; ð3Þ

and provided that ηdðtÞ is drawn from a Gaussian distri-
bution with moments satisfying the following conditions.
First, the mean hηdðtÞi ¼ 0 for all d. Second, the correla-
tions of η should match the input correlations in the full
network, averaged separately over each group. Using
Eq. (3) and the property NhJ0ijJ0kli ¼ δikδjl, we get the
self-consistency conditions:

hηcðtÞηdðtþ τÞi ¼
XD
a;b¼1

Xna
j¼na−1þ1

Xnb
l¼nb−1þ1

gcagdbhJ0ijJ0klihϕ½xjðtÞ�ϕ½xlðtþ τÞ�i ¼ δcd
XD
b¼1

αbg2cbCbðτÞ; ð4Þ

where h·i denotes averages over i ¼ nc−1 þ 1;…; nc and
k ¼ nd−1 þ 1;…; nd in addition to average over realizations
of J. The average firing-rate correlation vector is denoted by
CðτÞ. Its components (using the variables of the full network)
are CdðτÞ ¼ ð1=NαdÞ

Pnd
i¼nd−1þ1 hϕ½xiðtÞ�ϕ½xiðt þ τÞ�i,

translating to CdðτÞ ¼ hϕ½ξdðtÞ�ϕ½ξdðtþ τÞ�i using the
mean-field variables. Importantly, the covariance matrix
HðτÞ with elements HcdðτÞ ¼ hηcðtÞηdðtþ τÞi is diagonal,
justifying the definition of thevectorH ¼ diagðHÞ.With this
in hand, we rewrite Eq. (4) in matrix form as

HðτÞ ¼ MCðτÞ; ð5Þ

where M is a constant matrix reflecting the network con-
nectivity structure: Mcd ¼ αdg2cd.
A trivial solution to this equation is HðτÞ ¼ CðτÞ ¼ 0,

which corresponds to the silent network state: xiðtÞ ¼ 0.
Recall that in the network with a single cell type, the matrix
M ¼ g2 is a scalar and Eq. (5) reduces to HðτÞ ¼ g2CðτÞ.
In this case the silent solution is stable only when g < 1.
For g > 1, the autocorrelations of η are nonzero, which
leads to chaotic dynamics in the N-dimensional system [7].
In the general case (D ≥ 1), Eq. (5) can be projected on

the eigenvectors ofM leading to D consistency conditions,
each equivalent to the single group case. Each projection
has an effective scalar given by the eigenvalue in place
of g2 in the D ¼ 1 case. Hence, the trivial solution will be
stable if all eigenvalues of M have real part < 1. This is
guaranteed if Λ1, the largest eigenvalue of M, is < 1
[26]. If Λ1 > 1, the projection of Eq. (5) on the leading
eigenvector of M gives a scalar self-consistency equation
analogous to the D ¼ 1 case for which the trivial solution
is unstable. As we know from the analysis of the single

cell-type network, this leads to chaotic dynamics in the
full network. Therefore, Λ1 ¼ 1 is the critical point of the
multiple cell-type network.
Another approach to show explicitly that Λ1 ¼ 1 at

the critical point is to consider first-order deviations in
the network activity from the quiescent state. Here,
CðτÞ ≈ ΔðτÞ, where ΔðτÞ is the autocorrelation vector of
the activities with elements ΔdðτÞ ¼ hξdðtÞξdðtþ τÞi. By
invoking Eq. (3), we have

HðτÞ ¼
�
1 −

d2

dτ2

�
ΔðτÞ: ð6Þ

Substituting Eq. (6) into Eq. (5) leads to an equation of
motion for a particle with coordinates ΔðτÞ:

d2ΔðτÞ
dτ2

¼ ðI −MÞΔðτÞ: ð7Þ

The particle’s trajectories depend on the eigenvalues of
M. The first bifurcation (assuming the elements of M are
scaled together) occurs when Λ1 ¼ 1, in the direction
parallel to the leading eigenvector. Physical solutions
should have ∥ΔðτÞ∥ < ∞ as τ → ∞ because ΔðτÞ is an
autocorrelation function. When all eigenvalues of M are
smaller than 1 the trivial solution ΔðτÞ ¼ 0 is the only
solution [in the neighborhood of xiðtÞ ¼ 0 where our
approximation is accurate]. At the critical point (Λ1 ¼ 1)
a nontrivial solution appears, and above it finite autocorre-
lations lead to chaotic dynamics in the full system.
The eigenvalue spectrum of J is circularly symmetric in

the absence of correlation between matrix entries as is
evident from numerical simulations and direct calculations
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using random matrix theory techniques [27]. To derive the
radius r of the support of its spectral density, one can use
the following scaling relationship. If all elements of the
matrix gcd are multiplied by a constant κ, the radius r will
scale linearly with κ. At the same time, Mcd ∝ g2cd, so
Λ1 ∝ κ2. Thus, r ∝

ffiffiffiffiffiffi
Λ1

p
. The proportionality constant can

be determined by noting that for both single and multiple
cell-type networks this transition occurs when a finite mass
of the spectral density of J has real part> 1, which can also
be verified by direct computation of the largest Lyapunov
exponent [22]. The transition occurs at Λ1 ¼ 1, meaning
that for Λ1 ¼ 1, the eigenvalues of J are bounded in the
unit circle r ¼ 1, so in general,

rðα;gÞ ¼
ffiffiffiffiffiffi
Λ1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ½λðMÞ�

p
: ð8Þ

Predictions for the radius according to Eq. (8) matched
numerical simulations for a number of different matrix
configurations [Figs. 1(a) and 1(b)]. Equation (8) also holds
for networks with cell-type-independent connectivity, in
which case Λ1 ¼ g2 and r ¼ g. Importantly, r differs
qualitatively from the mean synaptic gain ḡ. The inequalityffiffiffiffiffiffi
Λ1

p
≠ ḡ is a signature of the block-structured variances.

It is not observed in the case where the variances have
columnar structure [28] or when the Jij’s are randomly
permuted.
Next we analyze the network dynamics above the critical

point. In the chaotic regime the persistent population-level
activity is determined by the structure matrix M. Consider
the decomposition M ¼ P

D
c¼1 ΛcjuRc ihuLc j, where juRc i,

huLc j are the right and left eigenvectors ordered by the real
part of their corresponding eigenvalues RefΛcg, satisfying
huLc juRd i ¼ δcd. We find, with analogy to the analysis of
the scalar self-consistency equation in Ref. [7], that the
trivial solution to Eq. (5) is unstable in the subspace
UM ¼ spanfjuR1 i;…; juRD⋆ig, where D⋆ is the number of

eigenvalues of M with real part > 1. In that subspace the
solution to Eq. (5) is a combination of D⋆ different
autocorrelation functions. In the D −D⋆ dimensional
orthogonal complement subspace U⊥

M, the trivial solution
is stable. Consequently, the vectors HðτÞ, ΔðτÞ have
significant projections in UM with ≈0 projection on any
vector in U⊥

M (Fig. 2). Note that for asymmetricM, juRc i are
not orthogonal and U⊥

M is spanned by the left rather than the
right eigenvectors: U⊥

M ¼ spanfhuLD⋆þ1j;…; huLDjg.
In the special case D⋆ ¼ 1, we can write HðτÞ ¼

uR
1qHðτÞ and ΔðτÞ ¼ uR

1qΔðτÞ, where qHðτÞ, qΔðτÞ are
scalar functions of τ determined by the nonlinear self-
consistency condition. Therefore, neurons in all groups
have the same autocorrelation function with different
amplitudes. The ratio of amplitudes is determined by the
components uR1c of the leading right eigenvector of M [see
Figs. 2(a) and 2(b)] as ΔcðτÞ=ΔdðτÞ ¼ uR1c=u

R
1d. This ratio

is independent of τ and the firing-rate nonlinearity. The
latter affects only the overall amount of activity in the
network but not the ratio of activity between the subgroups.
We illustrate how these results give insight into a

perplexing question in computational neuroscience—how
can a small number of neurons have a large effect on the
representational capacity of the whole network? In adults,
newborn neurons continuously migrate into the existing
neural circuit in the hippocampus and olfactory bulb regions
[29]. Impaired neurogenesis results in strong deficits in
learning and memory. This is surprising since the young
neurons, although hyperexcitable, constitute only a very
small fraction (< 0.1) of the total network. To better
understand the role young neurons may play, we analyzed
a network withD ¼ 2 groups of neurons: group 1 of young
neurons that is significantly smaller than group 2 of mature
neurons (α1 ≪ α2). The connectivity within the existing
neural circuit is such that by itself that subnetwork would
be in the quiescent state: g22 ¼ 1 − ϵ < 1. To model the
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FIG. 1 (color online). Spectra and dynamics of networks with cell-type-dependent connectivity (N ¼ 2500). The support of the
spectrum of the connectivity matrix J is accurately described by

ffiffiffiffiffiffi
Λ1

p
(radius of blue circle) for different networks. Top insets: The

synaptic gain matrixG summarizes the connectivity structure. Bottom insets: Activity of representative neurons from each type. The line
Refλg ¼ 1 (purple) marks the transition from quiescent to chaotic activity. (a) An example chaotic network with two cell types. The
average synaptic gain ḡ (radius of red circle) incorrectly predicts this network to be quiescent. (b) An example silent network. Here, ḡ
incorrectly predicts this network to be chaotic. (c) An example network with six cell types. In all examples the radial part of the
eigenvalue distribution ρðjλjÞ (orange line) is not uniform.
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increased excitability of the young neurons, all connections
of these neurons were set to g12 ¼ g21 ¼ g11 ¼ γ > 1 − ϵ.
We analyzed the network’s capacity to reproduce a target

output pattern fðtÞ. The activity of the neurons serves as a
“reservoir” of waveforms from which fðtÞ is composed.
The learning algorithm in Ref. [30] allows us to find the
vector w such that zðtÞ ¼ P

N
i¼1 wiϕiðtÞ ¼ fðtÞ, where the

modified dynamics have Jij → Jij þ uiwj and u is a
random vector with Oð1Þ entries. For simplicity we choose
periodic target functions fðtÞ ¼ sinðΩtÞ and define the
learning index, lΩ, as the fraction of power that the output
function zðtÞ has at the target frequency. The index varies
from 0 to 1 and is computed by averaging over 50 cycles.
Performance depends primarily on Λ1 and not on the

network structure, peaking for
ffiffiffiffiffiffi
Λ1

p
≈ 1.5 (Fig. 3). This is

directly related to the maximal learning capacity observed
at g ≈ 1.5 in networks with a single cell type [30], further
supporting the identification of

ffiffiffiffiffiffi
Λ1

p
as the effective gain.

Importantly, because of the block-structured connectivity,
the effective gain is larger than the average gain (

ffiffiffiffiffiffi
Λ1

p
> ḡ),

for all values of γ and α1 [22]. In other words, for the
same average connection strength, networks with block-
structured connectivity have a higher effective gain that
can place them in a regime with larger learning capacity
compared to networks with shuffled connections, demon-
strating that a small group of neurons could place the entire
network in a state conducive to learning. Moreover, since

increases in average connection strength are generally
associated with increased metabolic cost, networks with
block-structured connectivity can provide a more metabol-
ically efficient way to perform computation compared to
statistically homogeneous networks.
Outgoing connections from any given neuron are typ-

ically all positive or all negative, obeying Dale’s law [31].
Within random networks, this issue was addressed by
Rajan and Abbott [28] and Tao [32] who computed the
bulk spectrum and the outliers of a model where columns
of J are separated to two groups, each with its offset and
element variance. The dynamics of networks with cell-
type-dependent connectivity that is offset to respect Dale’s
law were addressed in Ref. [33] with some limitations, and
remain an important problem for future research.
Ultimately, neural network dynamics need to be con-

sidered in relation to external inputs. The response proper-
ties of networks withD ¼ 1 have been recently worked out
[19,34]. The analogy between the mean-field equations
suggests that our results can be used to understand the
nonautonomous behavior of multiple cell-type networks.
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