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The phenomenon of magnetization plateaus in antiferromagnets under a magnetic field has always been
an important topic in magnetism. We propose to probe the elusive physics of plateaus in 2D by considering
a hole-doped antiferromagnet and studying the signatures of magnetization plateaus in terms of the
properties of holes, coupled to an effective gauge field generated by the spin sector. The latter mediates
interaction between the holes, found to be algebraically decaying and long ranged with both Coulombic
and dipolar forms outside the plateau and short ranged (local) inside the plateau. The resulting hole spectral
weight is significantly broadened off plateau, while it remains sharply peaked on plateau. We also extend
the result obtained for a 1D system where finite hole doping gives rise to a shift in the magnetization value
of the plateaus.
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Introduction.—Antiferromagnets under a magnetic field
have been known to display magnetization plateaus. The
theory of this magnetization plateaus has been an important
problem in magnetism and is mainly aimed at providing an
explanation of such magnetization plateaus. An even more
intriguing question is what happens if we hole dope the
antiferromagnet by removing some spins. Hole-doped
antiferromagnets have drawn much attention since the
discovery of high Tc cuprate superconductivity obtained
upon hole doping the parent compound antiferromagnets
[1]. Most studies in this context considered Hubbard types
of models at a zero field analyzed using slave-particle
formalism with an emergent gauge field. The topic con-
stitutes a fundamental problem of importance to all areas of
physics: matter-gauge field interaction.
In the area of magnetism itself, antiferromagnets under a

magnetic field are widely studied as the field helps select
a well-defined ground state, thus allowing for the use of a
semiclassical approach, and it gives rise to plateaus.
Magnetization plateaus are enhanced by geometric frus-
tration and are also related to exotic states of matter, such as
spin liquid states [2]. However, most studies so far have
considered undoped antiferromagnets with the hole-doped
case not explored much in realistic models [3]. The
magnetization plateaus should have immediate conse-
quences on the properties of holes, and this is what we
investigate in this work.
The theory of magnetization plateaus, without hole

doping, can be relatively well understood with a spin
path-integral approach [4]. In one dimension it gives
rise to a plateau quantization condition derived based on
Lieb-Schultz-Mattis theorem [5,6] as shown first in [7,8].
The presence of holes in 1D can also be treated with
bosonization [9–12] and the spin path-integral approach
[13,14]. However, generalization of the theory to two
and higher dimensions remains a challenge. In this work,

we show that one can gain important insights into the
physics of a magnetization plateau in higher dimensions
by working out the fermion-gauge field theory of a
hole-doped antiferromagnet. We demonstrate that the
on- and off-plateau states of an antiferromagnet give rise
to distinct types of interactions between holes and the
resulting spectral function.
Field theory.—We employ a semiclassical path integral

theory of a spin system [4] and start with an Euclidean
space-time effective action of a 2D antiferromagnet in the
presence of holes,
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describing low-energy long-distance fluctuations
around a classical ground state specified by S ¼
Sðsin θ0 cosϕ0; sin θ0 sinϕ0; cos θ0Þ with spin S and z
magnetization m ¼ S cos θ0, where ϕ is the phase angle
fluctuation field around ϕ0 [4]. The Kτ; Kr are stiffness
coefficients which can be determined from a microscopic
spin model [15], giving boson velocity vb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kr=Kτ

p
. The

ψ̄ ;ψ represent the creation and annihilation operator fields
of the (spinless) fermionic holes. The ϵk0sðϕk0 Þ is fermion
energy dispersion that couples the holes to the spin sector
represented by the ϕ field [16] via the gauge field given as
eAμ ¼ eg∂μϕ; μ ¼ τ; x; y with e≡ eg the effective gauge
charge of the Uð1Þ gauge theory [17]. Our theory will be
very generic, but it is aimed to be a paradigm for spin
systems well described by Heisenberg model with strong
anisotropy and under a magnetic field,
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with a classical ground state characterized by cos θ0 ¼
h=½2Sð4J þDÞ� [4], such as those systems with S ¼ 3=2
where 1=3 plateau is expected to occur at large
enough D [18].
We will consider a model for holes which, in the realistic

case of finite doping, has linear energy dispersion around the
Fermi surface. The hole doping itself will give a feedback
effect to the spin sector. In such linear fermion dispersion,
a sea of occupied negative energy states arises due to
linearization and must be removed by applying a projection
operator [13,14]; Pj ¼ 1 − ψ†

jψ j=ð2SÞ at each site j on the
microscopic lattice model. The doping in turn modifies
the plateau quantization condition via normal ordering of
the fermion bilinear operator: ψ†

jψ j ¼ δþ ∶ψ†
jψ j∶, where

δ ¼ hψ†
jψ ji is the doping level. We find that with hole

doping δ, the plateau occurs at�
1 −

δ

2S

�
ðS�mÞ ∈ Z ð4Þ

indicating a shift in the magnetization plateau, proportional
to doping level δ, compared to the zero doping case,
confirming the result in 1D [14].
As was shown in [4], the presence of the Berry phase

term plays a crucial role in the large scale physics of the
spin sector. If the factor in front of it is an arbitrary real
number, field configurations with vortices are forbidden by
quantum interference and the Goldstone field ϕ is pro-
tected; the system does show long-range order and gapless
behavior with no plateau. On the contrary, when the Berry
phase factor is an integer, vortex configurations are allowed
and, for some values of the spin field stiffness, the system
may become disordered and acquire a gap. This is the
plateau situation which can be phenomenologically repre-
sented by an effective mass term in the Goldstone field,
writable as m2

ϕϕ
2=2, into the effective action Eq. (1).

We describe holes in an antiferromagnet as follows.
For concreteness, we consider a simple model with holes
hopping on a square lattice with nearest-neighbor tight-
binding dispersion ϵ0k ¼ −2tðcos kx þ cos kyÞ − μ. This
gives a Fermi surface with a shape which depends on
the chemical potential (and thus filling factor). At chemical
potential μ ¼ −4t, we get a Fermi point (corresponding to
zero or a thermodynamically small number of hole doping);
at −4t < μ < 0, we get a roughly circular Fermi surface
that can be described by k2Fx þ k2Fy ¼ k2F ¼ 4þ μ=t; and at
half filling μ ¼ 0, we get a square-shaped Fermi surface
described by kFy ¼ �kFx � π.
The fermionic holes will be coupled to a gauge

field generated by the spin sector. An effective action for
a hole with such a coupling can be derived by considering a
tight-binding hopping Hamiltonian [14] with a hopping

integral which involves the overlap of the spin coherent
states at the neighboring sites between which the hole
hops [13], giving the spatial part of the gauge field Ax; Ay,
plus applying a projection operator that represents the
process of doping holes [14], giving the temporal part of
gauge field Aτ. The result is equivalent to a minimal
coupling −i∂μ → −i∂μ − eAμ between the spin sector’s
gauge field and the hole. Considering a nearest-neighbor
tight-binding Hamiltonian on a square lattice and applying
this minimal coupling to the free hole dispersion ϵ0k gives
ϵk0sðϕk0 Þ ¼ −2tðcosðkx − iegk0xϕk0 Þ þ cosðky − iegk0yϕk0 ÞÞ.
Performing Taylor expansion to the two cosine terms
around the minimum of the band and doing the
Euclidean space-time functional integral, we obtain
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where the function Fðk0sÞ and the propagator GϕðkÞ of the
Goldstone field are given by
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in Euclidean space-time [19]. We see that the main effects
of the spin sector manifest in the form of a 4-fermion
interaction term (scattering between two fermions) with a
kernel which is massless for a long-range interaction
between vortex loops but gapped for a short-range inter-
action between vortex loops. We note that outside the
plateau where mϕ → 0, as jkj → 0 the kernel goes as
kαGϕðkÞkβ ∼ 1=Kτ;r, while in the plateau where mϕ → ∞,
the kernel goes as kαGϕðkÞkβ → 0. This implies that within
the plateau, we have a true short-range interaction between
fermionic holes, whereas outside the plateau, we have a
nonlocal algebraically decaying interaction between fer-
mionic holes [20]. This 2-fermion scattering action is best
illustrated by the Feynman diagram in Fig. 1(a) [21].
An important result of this work is the final form of

this 4-fermion interaction term in the out-of-plateau and
in-plateau cases, which in Euclidean space-time can be
written as

δSquadraticψ̄ ;ψ ¼
Z
k0s

ψ̄k00000ψk0000Vðk0sÞψ̄k000ψk00δ

�X
k0s

�
; ð9Þ

where
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for the out-of-plateau (mϕ → 0) and in-plateau (mϕ → ∞)
cases represented in Figs. 1(a) and 1(b), respectively.
We have rescaled Kτ ¼ Kr ¼ Ks (equivalent to setting
the boson velocity to unity, vb ¼ 1), and the constants
are ~m2

s ¼ m2
ϕ=Ks and A ¼ 1= ~m2

s [19]. Interestingly,
Vout-of-platðk0sÞ contains an algebraically decaying interac-
tion with a dipolar form in real space in addition to the
more conventional density-density interaction term,

δSdip ¼
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Ks
t2e2g

Z
xμ;x0μ

3ðd1 · ΔrÞðd2 · ΔrÞ − ðd1 · d2ÞjΔxj2
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3ðΔτÞ2 − jΔxj2

4πjΔxj5
�
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with dipole moments d1 ¼ ½∇ψ̄ðxÞ�ψðxÞ, d2 ¼
½∇ψ̄ðx0Þ�ψðx0Þ, Δτ ¼ τ0 − τ, Δr ¼ x0 − x, and jΔxj ¼
jx0μ − xμj, where xμ ¼ ðτ;xÞ, ρðxÞ ¼ ψ̄ðxÞψðxÞ. In each
of Eqs. (10) and (11), the spatial momentum part represents
the dipole interaction, whereas the frequency (k0’s) part
represents the density-density interaction. Surprising as it
is, dipolar interaction intuitively originates from spatial
nonuniformity of the hole density distribution, which gives
rise to a nonzero effective dipole moment, corresponding to
nonzero Fourier wave vectors k0s ≠ 0. Such dipolar terms
will vanish for a spatially uniform distribution of holes,
where only k0s ¼ 0 remains. The presence of both space
and time distances in Eqs. (12) and (13), corresponding to
the presence of both momentum and frequency dependence
in the kernel Eq. (6), reflects the fact that the long-range
interaction is not instantaneous as it is mediated by
Goldstone bosons with low speed, vb ≪ c, in reality.

Sdens has asymptotic spatial dependence VðrÞ ∼ 1=r3 at
large distances and is repulsive [19]. This unexpected result
arises from the peculiarity of the gauge field with its origin
from the spin sector’s physics and its coupling to holes.
Next, we consider finite but low doping levels at

−4t < μ < 0, where we have a roughly circular
Fermi surface. In this case, we obtain a linearized
dispersion ϵk ¼ 2t½ðkx − kxFÞ sin kxF þ ðky − kyFÞ sin kyF�
where k2xF þ k2yF ¼ k2F ¼ 4þ μ=t was derived using
Taylor series expansion of nearest-neighbor tight-binding
energy dispersion ϵk ¼−2tðcoskxþ coskyÞ−μ around the
Fermi surface satisfying −2tðcos kxF þ cos kyFÞ − μ ¼ 0
[22]. We obtain 4-fermion interactions and kernels similar
to Eqs. (6), (10), and (11) but with the integrals over
fermion momenta constrained to be near the Fermi surface
only [19]. We observe that the distinction of the physics of
the spin sector on and off plateau manifests in the form
of a distinct fermion-fermion interaction between holes in
hole-doped antiferromagnets.
In-plateau vs out-of-plateau physics from hole

properties.—We consider the signature of the different types
of interactions arising from the in-plateau and out-of-plateau
states of the spin sector in terms of fermion Green’s function
renormalization and the spectral function of holes, which
is a quantity typically measured by a photoemission experi-
ment when one is interested in the charge degree of freedom.
The spectral function, a generalization of the density of
states, is defined as Aðk;ωÞ ¼ −2sgnðωÞImGðk;ωÞ, where
Gðk;ωÞ is a renormalizedGreen’s functionwhich embodies
the effects of the interaction of fermions with each other and
with other degrees of freedom.Wewill consider an approxi-
mation where we geometrically sum a particular family of
diagrams involving a series of one-loop fermion self-energy
diagrams and obtain the familiar result G−1ðk;ωÞ ¼
G−1

0 ðk;ωÞ − Σðk;ωÞ where in this case Σðk;ωÞ is the
one-loop self-energy correction to the free fermion
Green’s function G−1

0 ðk;ωÞ ¼ ω − ϵk þ iηsgnðjkj − kFÞ
with η an infinitesimally small positive number to be taken
to zero at the end of the calculation [23]. The distinction in
the profile of the hole spectral function is what we expect to
be a prospective experimental signature that distinguishes
the physics of antiferromagnets between within and outside
of the plateau.
For the in-plateau case, where we have a local inter-

action, we compute the one-loop fermion self-energy
diagram shown in Fig. 2 with the 4-fermion vertex given
in Eq. (11) from which we obtain for the one-loop self-
energy Σðk;ωÞ ¼ R ½d3q=ð2πÞ3�G0ðqÞVðk; qÞ where we
have to take into account the fact that there are four
equivalent configurations of the Feynman diagram in
Fig. 2, contributing to Σðk;ωÞ. The resulting spectral
function is demonstrated in Fig. 4(a). We observe that
with the local (or short-range) interaction of the in-plateau
state, the sharp spectral peak of free fermions is not
significantly broadened or dispersed.

FIG. 1. (a) Feynman diagram of a 2-fermion scattering process
mediated by the gauge field. (b) The local interaction vertex
counterpart.
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For the out-of-plateau case, the one-loop self-energy
diagrams are shown in Fig. 3 [23] where the nonlocal long-
range interaction is represented by a wavy line. The kernel
is given by Eq. (10) with q ¼ k ¼ k0 as the momentum
frequency of the spin sector’s gauge field which mediates
the long-range interaction; k000; k00000 are the momenta
frequencies of the scattered fermions. From this expression,
it is clear that the contribution of the tadpole diagram in
Fig. 3(a) vanishes because momentum conservation forces
q ¼ 0. The expression for the nonvanishing diagram in
Fig. 3(b) is ΣðkÞ ¼ R ½d3q=ð2πÞ3�G0ðk − qÞVðk; qÞ with
Vðq; kÞ given in Eq. (10) and where we should note that
there are two equivalent configurations of this diagram with
equal contribution. The self-energy is both momentum and
frequency dependent, reflecting the noninstantaneousness
of the algebraic long-range interaction.
We show the resulting profile of AðωÞ at a fixed k in

Fig. 4(b) for this off-plateau case with quadratic hole
dispersion. We notice that, due to the algebraically
decaying long-range fermion-fermion interaction, the spec-
tral weight is heavily broadened compared to that of free
noninteracting fermions which has a hallmark delta func-
tion peak. The spectral peak broadening increases with the
strength of the coupling to the gauge field represented by
gauge charge eg and also the Goldstone mode’s total energy
bandwidth δq0 ∼ 2vbΛ, where 2Λ is the total momentum
bandwidth. In the original microscopic spin model Eq. (3),
this is achieved for large J;D ≫ h. Comparing the two
cases, it can be seen that the hole spectral function in the
out-of-plateau state is much more significantly broadened
and suppressed compared to that of the in-plateau state.
This broadening reflects the effects of Goldstone bosons
which survive outside the plateau and mediate the long-
range interaction. We then consider the more realistic finite

hole-doping situation with its linear dispersion with results
shown in Figs. 5(a) and 5(b) giving the same conclusions.
Discussion.—We have demonstrated that the fermion

spectral function of hole-doped antiferromagnets can be
used as a direct probe of on-plateau vs off-plateau physics
of the spin sector. We have shown that within the plateau
the spin sector generates a local fermion-fermion inter-
action while outside the plateau it generates a long-range
fermion-fermion interaction with both density-density and
dipolar contents. This difference manifests in the spectral
function of the holes. In particular, our result predicts that
the hole spectral function for the in-plateau case remains a
sharp delta function hallmark of the free fermion spectral
function with negligible broadening, whereas outside the
plateau, the hole spectral function is significantly broad-
ened and reduced in height, subject to an appropriate sum
rule. We also predict that finite hole doping will shift the
magnitude of plateaus.
With the presence of long-range algebraic interactions,

there is a possibility for the formation of Wigner crystals
[25] of holes, when the density-density interaction, which
is indeed repulsive in this case, dominates over the dipolar
interaction and kinetic energies. In contrast to the usual
Coulomb case, however, based on dimensional analysis, we
expect the Wigner crystal to occur at a high density of holes
rather than a low density. This is due to the fact that the
algebraic interaction decays as VðrÞ ∼ 1=r3 rather than the
usual VðrÞ ∼ 1=r, while kinetic energy goes as 1=r2.
Compared with the 1D case, it is expected that, other than

the clear differences in technical details, the distinction in the
behavior of the spectral function on and off plateaus will be
less discernible, due to the Luttinger (non-Fermi) liquid

FIG. 2. One-loop self-energy diagram in the in-plateau case
with its local fermion-fermion interaction.

FIG. 3. One-loop self-energy diagrams in the out-of-plateau
case where the fermion interaction is long ranged. (a) The tadpole
diagram. (b) The bubble diagram.
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FIG. 4 (color online). Spectral function AðωÞ at a fixed jkj for
quadratic dispersion around Fermi point (a) in the in-plateau case
and (b) in the out-of-plateau case [24].
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FIG. 5 (color online). Spectral function AðωÞ at a fixed jkj for
linearized dispersion at finite doping (a) in the in-plateau case and
(b) in the out-of-plateau case [24].
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behavior. Our results qualitatively agree with hole spectral
function theoretical calculations for antiferromagnets in
underdopedcuprates (at zero field) treatedwith a slave-particle
approach, where similar broadening arises due to the nonlocal
(despite finite-ranged few nearest-neighbor) interactions [26],
and are confirmed experimentally [27]. As photoemission
studies on hole-doped antiferromagnets with plateaus at a
finite field themselves have not yet been available, we would
like to propose candidate materials: 2D antiferromagnet
compounds SrCu2ðBO3Þ2 [28] and ðCuBrÞSr2Nb3O10 [29],
which are very promising compounds for testing our theo-
retical predictions as they are 2D antiferromagnetic materials
that have been shown to display plateaus.
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