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We study domain-wall (DW) motion induced by spin waves (magnons) in the presence of the
Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass
through the DW, and this torque represents a linear momentum exchange between the spin wave and the
DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange
leads to a rotation of the DW plane rather than a linear motion. In the presence of an effective easy plane
anisotropy, this DMI induced linear momentum transfer mechanism is significantly more efficient than
angular momentum transfer in moving the DW.
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The manipulation of domain-wall (DW) motion has been
extensively studied in the past few years due to potential
applications in logic devices and data storage technology
[1–5]. A DW can be driven by an applied field [6], micro-
waves [7], spin transfer torque [8], and spinwaves (magnons)
[9–11]. Spin waves can drive the DW effectively since
they carry magnonic spin current. In general, when the spin
waves travel through the DW, the DW acquires a negative
velocity—relative to the propagation direction of the spin
waves—due to conservation of angular momentum [11],
although positive velocities have been observed in micro-
magnetic simulations at special frequencies [10,12–14].
Angular momentum conservation plays a crucial role

in spin wave induced DW motion: when the spin wave
passes through the DW, the magnonic spin current changes
its sign, which generates a torque and the DW moves in
order to absorb this torque. Magnons can be considered as
particles with angular momentum�ℏ and linear momentum
ℏk [11]. When the spin wave is reflected, linear momentum
is transferred to the DW which results in DW motion
[12,15]. The difference between these two mechanisms is
that the DW moves in opposite directions [15,16]. In this
Letter we demonstrate, by using micromagnetic simulations
and a one-dimensional (1D) analytical DW model, that
spin waves passing through a domain wall in the presence of
a Dzyaloshinskii-Moriya interaction (DMI) and an easy-
plane anisotropy drive the domain wall very effectively.
We attribute this to linear momentum transfer and show that
this effect can be more efficient than the better known
angular momentum transfer by an order of magnitude.
The DMI is an antisymmetric interaction induced by

spin-orbit coupling due to broken inversion symmetry in
lattices or at the interface of magnetic films [17]. The DMI
can lead to chiral magnetic orders such as Skyrmions and
spin spirals [17–20]. In addition, the DMI has brought new
phenomena for DW dynamics driven by fields [21] or

charge currents [22]. The DMI has been found both for
magnetic interfaces [20] and bulk materials such as MnSi
[23] and FeGe [24]. In this work we focus on bulk DMI
with micromagnetic energy density εDMI ¼ Dm · ð∇ ×mÞ
where D is the DMI constant and m is the normalized
magnetization.
We consider a quasi-1D nanowire with the exchange

interaction, DMI, and two effective anisotropies. One
anisotropy K is the uniaxial anisotropy along the x axis,
and the other effective K⊥ is an easy xy-plane anisotropy.
The combined anisotropies can be considered as a model of
overall effect including the demagnetization field, surface,
or magnetoelastic anisotropy [24,25]. The total free energy
for the wire along the x axis is

E ¼ S
Z

½Að∇mÞ2 − Km2
x þ K⊥m2

z þ εDMI�dx; ð1Þ

where S is the cross-sectional area of the wire and A is the
exchange constant.
The dynamics of the magnetizationm is governed by the

Landau-Lifshitz-Gilbert (LLG) equation

∂m
∂t ¼ −γm ×Heff þ αm ×

∂m
∂t ; ð2Þ

where γð> 0Þ is the gyromagnetic ratio and α is the
Gilbert damping. The effective field Heff is calculated
as the functional derivative Heff ¼ −1=ðμ0MsÞδE=δm ¼
2=ðμ0MsÞ½A∇2m −D∇ ×mþ Kmxex − K⊥mzez� with
Ms the saturation magnetization and μ0 the vacuum
permeability.
The typical DW structures described by the energy

[Eq. (1)] for the case D ¼ 0 are head-to-head and
tail-to-tail DWs, and the former is shown in Fig. 1(a).
By using spherical coordinates θ ¼ θðxÞ and ϕ ¼ ϕðxÞ,
the magnetization unit vector m is expressed as
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m ¼ ðcos θ; sin θ cosϕ; sin θ sinϕÞ, and the total micro-
magnetic energy [Eq. (1)] reads

E ¼ S
Z

½Aðθ02 þ sin2θϕ02Þ −Dϕ0sin2θ

þ Ksin2θð1þ κsin2ϕÞ�dx; ð3Þ

where κ ¼ K⊥=K and 0 represents the derivative with
respect to x. In the equilibrium state, the energy [Eq. (3)]
must be minimal, and thus we arrive at two coupled
differential equations for θ and ϕ by using standard
variational calculus,

2Aθ00 ¼ sin 2θðAϕ02 þ Kð1þ κsin2ϕÞ −Dϕ0Þ;
sin θð2Aϕ00 − K⊥ sin 2ϕÞ ¼ 2 cos θðD − 2Aϕ0Þθ0: ð4Þ

The corresponding boundary conditions are θ0 ¼ 0 and
ðϕ0 − 1=ξÞsin2θ ¼ 0 for x ¼ �∞ (see Supplemental
Material [26]) where ξ ¼ 2A=D is the characteristic length
[20]. We are searching for the head-to-head DW solution;
therefore, the ansatz cos θ ¼ − tanh½ðx − x0Þ=Δ� is used,
where Δ is the DW width and x0 is the DW center. Initially,
we consider the case of κ ¼ 0 (i.e., K⊥ ¼ 0) which
preserves the rotational symmetry. We assume that ϕ is
a linear function of space x, i.e., ϕðxÞ ¼ ðx − x0Þ=ξþ Φ
where Φ is the DW tilt angle. Inserting back into Eq. (4) we
obtain Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ðK − A=ξ2Þ

p
. In the absence of the DMI,

the DW width reduces to Δ0¼
ffiffiffiffiffiffiffiffiffiffi
A=K

p
which is the

well-known Bloch wall width. Therefore, the static
one-dimensional head-to-head DW profile can be
expressed as [22]

mx ¼ −tanhðx=ΔÞ;
my ¼ sechðx=ΔÞ cosðx=ξþ ΦÞ;
mz ¼ sechðx=ΔÞ sinðx=ξþ ΦÞ; ð5Þ

where we have chosen x0 ¼ 0. Figure 1(b) shows the
DW profile using Eq. (5) for K⊥ ¼ 0 with lines, and the
red dashed line depicts the micromagnetic simulation result
of mz for K2⊥ ¼ 6 × 105 J=m3. The rotational symmetry
breaks for K⊥ > 0 and the z component of the magneti-
zation mz is suppressed by the easy plane anisotropy. The
DW configuration [Eq. (5)] is not stable if the DMI constant
is larger than the critical value Dc ¼ 2

ffiffiffiffiffiffiffi
AK

p
[22], and the

presence of K⊥ > 0 increases this threshold.
We assume that the spin wave can be described by a small

fluctuation u ¼ uðxÞ and v ¼ vðxÞ aroundm0, wherem0 ¼
ðcos θ0; sin θ0 cosϕ0; sin θ0 sinϕ0Þ is the static domain-wall
profile Eq. (5),

m ¼ m0 þ ½uðxÞeθ þ vðxÞeϕ�e−iwt; ð6Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
≪ 1, eϕ ¼ ð0;− sinϕ0; cosϕ0Þ,

eθ ¼ ð− sin θ0; cos θ0 cosϕ0; cos θ0 sinϕ0Þ, and ω is the
spin wave frequency. By following the treatment in
Ref. [11], we obtain for the K⊥ ¼ 0 case,

Av00 − ~Kv cosð2θ0Þ ¼ −iuω=γ0;

Au00 − ~Ku cosð2θ0Þ ¼ ivω=γ0; ð7Þ

where we define ~K ¼ K −D2=ð4AÞ and γ0 ¼ 2γ=ðμ0MsÞ.
By introducing the complex variableψ ¼ u − iv, Eq. (7) can
bewritten as a time-independent Schrödinger-type equation
with reflectionless potential [27,28],

ĤψðζÞ ¼ ð1þ q2ÞψðζÞ; ð8Þ

where ζ¼x=Δ and the operator is Ĥ ¼ −d2=dζ2þ
1− 2sech2ðζÞ. The eigenvalues 1þ q2 ¼ ω=ðγ0 ~KÞ define
the spin wave dispersion relation inside the DW, which is
plotted in Fig. 1(c) (dark slate blue line) with wave vector
k ¼ q=Δ. The above discussion is only valid for wave-
lengths smaller than the domain-wall size, which corre-
sponds to wave vectors greater than km ∼ 1=ð2ΔÞ. The
propagating wave excitations can be expressed as ψðζ; tÞ ¼
ρkeiΩðtanhðζÞ − iqÞ where Ω ¼ ζq − ωt represents the
sine or cosine type waves and ρk the wave vector dependent
spin wave amplitude [29]. The reflectionless property for
spin waves holds even in the presence of the easy plane
anisotropy [30]. Interestingly, the dispersion relation inside
the DW is symmetric in the reduced wave vector q even
though the wall is twisted by the DMI. However, due to the

(a)

(b) (c)

FIG. 1 (color online). (a) Illustration of the head-to-head
DW in the nanowire using red-blue opaque arrows. The trans-
lucent purple arrows represent a spin wave excitation. The
DMI exerts a torque to change the DW tilt angle when spin
waves pass through the DW. (b) DW profile using Eq. (5)
with parameters A ¼ 8.78 × 10−12 J=m, K ¼ 1 × 105 J=m3,
D ¼ 1.58 × 10−3 J=m2, K⊥ ¼ 0 and Φ ¼ 0. The red dashed line
shows the simulation data for mz with K2⊥ ¼ 6 × 105 J=m3: the
easy-plane anisotropy favors a reduced mz. (c) The dispersion
relations inside and outside the DW.
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exponential decay of the DW profile when moving away
from the DW center, the magnetization is uniform in the
domains and the dispersion relations become asymmetric
outside the DW [19,31],

ω� ¼ γ0ðK þ Ak2 �DkÞ: ð9Þ

Figure 1(c) shows the asymmetric dispersion relations
outside the DW. The dispersion relation [Eq. (9)] also
suggests that the wave vector changes by D=A when the
spin wave passes through the DW if the frequency of the
spin wave remains the same. The spin wave becomes
elliptical rather than circular if K⊥ > 0 and the correspond-
ing dispersion relation outside the DW becomes ω� ¼
γ0½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ Ak2ÞðK þ K⊥ þ Ak2Þ

p
�Dk� [19].

To study the DW dynamics, micromagnetic simulations
have been performed using a 1D mesh with length 2000 nm
and cell size 1 nm. We make use of the parameters of
FeGe [32]: the exchange constant A ¼ 8.78 × 10−12 J=m,
the DMI constant jDj ¼ 1.58 × 10−3 J=m2, the saturation
magnetization Ms ¼ 3.84 × 105 A=m, and the damping
coefficient α ¼ 0.01. We set the easy axis anisotropy
K ¼ 1 × 105 J=m3 and treat K⊥ as an adjustable parameter
since both anisotropies depend on the sample shape, strain,
and surface effects [33]. The spin waves are excited locally
in the region−1000 ≤ x ≤ −998 nm by a linearly polarized
field hðtÞ ¼ h0 sinð2πftÞey with h0 ¼ 1 × 105 A=m.
The initial domain wall is located at x0 ¼ 0, and to
prevent spin wave reflection the damping coefficient is
increased linearly [10] from 0.01 to 0.5 in the region
800 ≤ x ≤ 1000 nm.
The spin wave traveling in the þx direction induces DW

motion. Figure 2 shows the DW velocity as a function
of frequency with different DMI constants for K⊥ ¼ 0.

The DW velocity is negative, which is explained by the
conservation of angular momentum, and the DW velocity
is ve ¼ −ðρ2=2ÞVg [11], where Vg ¼ ∂ωk=∂k is the spin
wave group velocity and ρ is the spin-wave amplitude.
For a circular spin wave, i.e., for K⊥ ¼ 0, by using
the dispersion relation inside the DW or Eq. (9) we

have Vg ¼ 2γ0Ak ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0Aðω − γ0 ~KÞ

q
. In the absence of

the DMI, the DW velocity is zero if the frequency is less
than the cut-off frequency fcut ¼ γ0K ≈ 14.5 GHz, which
is reduced to γ0 ~K ≈ 4.2 GHz by the DMI. The magnitude
of the DW velocity first increases, and then decreases
as the frequency of the spin wave increases. The reason
for this is that the spin wave amplitude decays expo-
nentially as the spin wave propagates. To quantify this,
we assume the magnetization has the form m ¼ �ex þ
ρ0eiðkx−ωtÞe−x=Γ with jρ0j ≪ 1 [19,34], and obtain Γ� ¼
2=ðαωÞ½γ0Ak�Dðω∓Dγ0kÞ=ðK⊥ þ 2K þ 2Ak2Þ�, which
is plotted in the inset of Fig. 2 with K⊥ ¼ 0 and shows
that the spin wave amplitude decaying is reduced by the
existence of the DMI. The predicted DW velocity ve is
plotted in Fig. 2 as well, which fits the simulation results
very well.
We now repeat the study for Fig. 2 above with K⊥ > 0

and where the spin waves are elliptical. Figure 3 shows
the DW velocity as a function of spin wave frequency for
K⊥ ¼ 2 × 105 J=m3, and the corresponding DW displace-
ments are shown in Fig. S1 (see Supplemental Material
[26]). As in the K⊥ ¼ 0 case, we find no spin wave
reflection, and the DW velocity is negative if the DMI
constant D is > 0. Similar to the K⊥ ¼ 0 case, the DW
velocity is zero when frequency f < fcut ≈ 16 GHz, and
the DW velocity first increases, and then decreases with
the frequency. However, the magnitudes are significantly
larger, and for the D < 0 case the DW velocity is positive.
To understand this novel DMI induced linear momentum

transfer phenomenon, we recall the dispersion relation

FIG. 2 (color online). Simulation results of the DW velocity as
a function of spin wave frequency with different DMI constants
for the case of K⊥ ¼ 0. The DMI parameters are D0 ¼ 0

and D� ¼ �1.58 × 10−3 J=m2. The ve curve is calculated by
ve ¼ −ðρ2=2ÞVg [11] where ρ at x ¼ 0 is extracted from the
simulation. Inset: Plot of spin wave amplitude decaying charac-
teristic length Γ versus frequency.

FIG. 3 (color online). The DW velocity as a function of
the spin wave frequency with K⊥ ¼ 2 × 105 J=m3. The
DMI constants employed in the simulation are D0 ¼ 0 and
D� ¼ �1.58 × 10−3 J=m2.
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[Eq. (9)] outside the DW and assume the wave vector of a
magnon before and after passing through the DW to be k1
and k2, respectively. When spin waves travel though the
DW, they jump from branch ωþ to ω− in the dispersion
relation, as depicted in Fig. 1(c) or Fig. S2(a) in Ref. [26].
By assuming the frequency keeps the same, the change
in wave vector δk ¼ k2 − k1 can be calculated. We show in
Fig. S3(a) [26] that the frequency does not change
significantly for our system. The change in wave vector
δk leads to a momentum change δp ¼ ℏδk for each
magnon.
The excited magnon density is n ¼ ρ2Ms=ð2ℏγÞ [12] and

for elliptical spin waves we choose ρ2 ¼ u0v0 where u0, v0
are fluctuation amplitudes in eθ and eϕ. The linear mom-
entum of a DW is PDW ¼ Ms=γ

R
ϕ sin θð∂θ=∂xÞdx ¼

2ΦMs=γ [35] and conservation of linear momentum
[15] gives dPDW=dt ¼ −dPmagnons=dt ¼ −nVgδp, i.e.,
_Φ ¼ −ð1=4Þρ2Vgδk. To describe the domain-wall motion,
we introduce an effective field along the x direction by using
the spherical form of the LLG equation,

Hx ¼ _Φ=γ ¼ −
1

4
ρ2δkVg=γ: ð10Þ

For circular spin waves δk ¼ D=A, and thus the correspond-
ing effective field is H0

x ¼ −ðρ2=2ÞDkγ0=γ. In the κ > 0
case (i.e., forK⊥ > 0), the spin wave is elliptical and δk is a
function of the frequency (see Fig. S2 in the Supplemental
Material [26]). The presence of a nonzero K⊥ suppresses
the wave vector change, especially for low frequency spin
waves. The DW velocity vd induced by this effective field
Hx in the presence of damping can be obtained using the
rigid DW model [36],

vd ¼
γΔHx

α

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ

2
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − h2

p
Þ

r
; ð11Þ

where h ¼ Hx=ðαHK⊥Þ andHK⊥ ¼ 2K⊥=ðμ0MsÞ. The total
velocity is the sum of the established vd and ve, which
correspond to the linear and angular momentum conserva-
tion, respectively.
To estimate the total velocity ve þ vd, we have extracted

the spin wave amplitude ρ at x ¼ 0 (the initial position
of the domain wall) from the simulation and the constant
DW width Δ0 is used. This total velocity is shown as
lines in Fig. 3 and shows a good agreement with the
simulation results shown as circle and triangle symbols.
The maximum DW velocity is around f ¼ 24 GHz, which
originates from the combined dependencies of Vg, Γ and
δk. Figure S2(b) shows that δk does not change signifi-
cantly as the frequency increases. The DW can rotate
freely if K⊥ ¼ 0 and the DW velocity induced by the
field Hx is v0 ¼ αΔγ0Hx=ð1þ α2Þ. We can establish
that v0 ∼ 10−4 m=s, which could explain why the linear
momentum exchange is not significant for the DW motion
shown in Fig. 2.

The domain-wall width Δ is not a constant for the
K⊥ > 0 case, and the corresponding DW profiles are
described by Eq. (4). Using the asymptotic behavior of
Eq. (4) (see Supplemental Material [26]) we can identify
two types of domain walls when K⊥ > 0 and D ≠ 0. The
first type of DW is ϕ0

∞ ¼ 0 which corresponds to the small
jDj case with κ > 0, as shown in Fig. 4(a). The second
type is ϕ0

∞ ∼ sin 2ϕ where ϕ is a monotonic function. In
this scenario, the DW width Δ∞ for x → ∞ is given by
1=Δ2

∞ ¼ð1þ κ=2þ ffiffiffiffiffiffiffiffiffiffi
1þ κ

p ÞK=ð2AÞ−1=ξ2. From Fig. 4(a)
we can find that Δ∞ is a good approximation if κ < 2.
The critical κc can be obtained by solving the equation
AKκ2c ¼ 2D2ð1þ κc=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κc

p Þ, which gives κc ≈ 6.2.
The simulation results also show that for κ ≫ 1 the DW
width Δc is close to Δ0.
So far the effective field is introduced by linear momen-

tum conservation. In the following section we cross-check
this using the LLG equation. The LLG equation [Eq. (2)]
with zero damping is rewritten to describe the spin
conservation law [37],

∂m
∂t þ ∂je

∂x ¼ τa þ τd; ð12Þ

where je ¼ γ0Am × ∂xm is the exchange spin current
associated with localized spin. The spin source or sink τa ¼
−γ0m × ½Kmxex − K⊥mzez� and τd ¼ γ0Dm × ð∇ ×mÞ
come from the anisotropy and DMI, respectively. The
average DW velocity can be computed through v ¼
ð1=2Þ R h∂mx=∂tidx where hfðtÞi represents the temporal
average for a periodic function fðtÞ. To compute this
average we keep the terms up to the square of the spin
waves amplitude and ignore the higher-order ones. By
integrating over space for the x component of the spin
current je, the velocity ve can be recovered.
By using the DW profile [Eq. (5)] it is found that the

overall contributions of the x component torques τa and τd
are zero, i.e.,

R hτxaidx ¼ R hτxdidx ¼ 0. However, the con-
tribution of the z component of the DMI torque is nonzero,
i.e.,

R hτzdidx ¼ −
R ðρ2=2Þγ0Dkmydx, which represents an

(a) (b)

FIG. 4 (color online). (a) Plot of two types of domainwalls,Δc is
obtained by fitting the simulation datawith cos θ ¼ − tanhðx=ΔcÞ.
(b) The contour plot of the simulated DW velocity (in m/s) for
different K⊥ and DMI constants, where the frequency of the
external ac field is fixed at f ¼ 30 GHz.
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additional torque rotating the DW plane. By introducing
an effective field H0

x in the x direction such that the
total torque on the DW equals the torque τzd, we obtain
H0

x ¼
R hτzd=γidx=

R
mydx ¼ −ðρ2=2ÞDkγ0=γ, which is in

exact agreement with the analysis above.
Figure 4(b) shows a contour plot of the DW velocity

as a function of K⊥ and DMI constant D. The figure is
approximately symmetric in the DMI constant, with a
biased velocity originating from the angular momentum
exchange between the spin wave and the DW. The DW
velocity is always negative if D > 0. There exist some
optimal areas in which the DW has the highest velocity, and
this area depends on the frequency of the spin wave.
For a 2D magnetic sample, the magnetization at the

edges is tilted due to the DMI, and the domain-wall velocity
is slightly reduced compared to the 1D model used above
(see Fig. S5 in the Supplemental Material [26]).
In conclusion, we have studied DMI induced linear

momentum transfer DW motion. We find that the DMI
exerts an extra torque which rotates the DW plane when the
spin wave passes through the DW, and that the effective
easy plane anisotropy suppresses the rotation and leads to a
fast DW motion. The effect of the linear momentum is
equivalent to an effective field and the direction of the field
depends on the sign of the DMI constant and the DW
profile. This linear momentum exchange between spin
waves and the DW exists in addition to the angular
momentum exchange when magnons pass through the
DW, and is more efficient in moving the domain wall.
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