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Several experiments have been performed on 1T-TiSe2 in order to identify whether the electronic
structure is semimetallic or semiconducting without reaching a consensus. In this Letter, we theoretically
study the impact of electron-hole and electron-phonon correlations on the bare semimetallic and
semiconducting electronic structure. The resulting electron spectral functions provide a direct comparison
of both cases and demonstrate that 1T-TiSe2 is of predominant semiconducting character with some
spectral weight crossing the Fermi level.
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In noncorrelated materials, the semimetal or semicon-
ductor character of a band structure refers to the presence or
absence of bands crossing the Fermi level. In correlated
materials, however, the electronic structure can be more
subtle, showing coherent and incoherent parts with
different spectral weights. Ab initio band-structure methods
reducing the Hamiltonian to a single-particle problem result
in energy-momentum relations expressed by δ functions.
These bare bands are not directly accessible to measure-
ments of correlated materials. Based on this consideration,
the interpretation of the electronic structure should refer to
the electron spectral function calculated via the self-energy.
For 1T-TiSe2, we have shown in a previous study [1] that
electron-hole fluctuations are strong even above the tran-
sition temperature—strong enough to influence the elec-
tronic structure around the Fermi level.
1T-TiSe2 is a layered, quasi-two-dimensional compound

with a commensurate 2 × 2 × 2 charge density wave
(CDW) of critical temperature Tc ≈ 190 K [2]. The ques-
tion of the nature of the gap (positive for a semiconductor
or negative for a semimetal) above the transition temper-
ature is widely debated. In 1976, based on electronic
transport properties, Di Salvo et al. [2] claimed that
1T-TiSe2 is a semimetal above the transition temperature.
This assumption was confirmed in 1985 by Anderson et al.
[3] performing angle-resolved photoemission spectroscopy
(ARPES), but in 2002, Kidd et al. [4] found a very small
indirect gap suggesting a semiconductor. In 2007, based on
optical spectroscopy, Li et al. [5] disagreed, claiming that
their measurements clearly reveal that the compound is
metallic in the high-temperature normal phase. One year
later, Rasch et al. [6] challenged this conclusion with
ARPES, defending that the analysis yields undoubtedly
semiconducting behavior in 1T-TiSe2.
In this Letter, we evaluate the electron-hole susceptibil-

ity, calculate the acoustic phonon softening driving the
transition to a lattice deformation in the CDW phase, and
calculate the influence of Coulomb and electron-phonon

interactions on the electron spectral function for both the
semimetal and the semiconductor bare-band structure.
Starting from bare bands of either semiconducting or
semimetallic structure, we show that ARPES does not
allow one to quantify the bare gap in the undeformed phase.
However, there are differences between the two scenarios.
First, contrary to the semimetal, where the fluctuations
prepare a BCS-like transition, the semiconductor scenario
shows typical features of a Bose-Einstein (BE) condensa-
tion. Second, the spectral function of the conduction band
has a coherent peak above the Fermi level in the semi-
conductor case but not in the semimetal case. Third, the
calculation of the phonon softening as a function of temper-
ature convincingly points towards a bare semiconducting
electronic structure. These facts allow new insights to the
semimetal versus semiconductor debate. The conduction-
band coherent peak lays above the Fermi level, suggesting a
semiconductor, but an incoherent part gives a non-negligible
electronic contribution at the Fermi level, explaining the
semimetallic character claimed in some experiments.
Our electron-hole correlation model is based on work of

Jerome et al. [7] discussing the ground state of an excitonic
insulator (EI) in the framework of Green functions. The
EI phase is induced by electron-hole pairs coupled by
Coulomb interaction that condensate at a critical temper-
ature, forming quasiparticles called excitons. The initial
gap of the system above the transition temperature to the
EI phase determines the BCS or BE condensation type
[8–10]. The formalism we use here is similar to the one
developed in previous papers [1,11]. Here, we just mention
the main steps of our calculations. The Hamiltonian
contains a kinetic energy term composed by the dispersions
of the topmost hole-like valence band [εvðkÞ] and the
lowest electronlike conduction band [εcðkÞ] and an inter-
action term coupling the two bands via the Coulomb
potential. The band dispersions are parabola fits to density
function theory (DFT) dispersions [12] performed with the
WIEN2K package [13]. In the hexagonal Brillouin zone
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(BZ) of 1T-TiSe2, the maximum of the valence band is
located at the center of the BZ, whereas the conduction
band has its minima at its border.
The extension of the EI model to fluctuations above the

transition temperature introduces a two-particle interacting
Green function G2. It is computed from the zeroth order in

the Coulomb potential Gð0Þ
2 . Gð0Þ

2 is a product of the Green
functions for holes and electrons and G2 is obtained via the
Bethe-Salpeter (BS) equation,

G2ðQ;p;p0;w; zÞ ¼ δpp0G
ð0Þ
2 ðQ;p;w; zÞþ i

V0

Ω
Gð0Þ

2 ðQ;p;w; zÞ
×
X

q

G2ðQ;pþq;p0;w; zÞ;

where w is the CDWwave vector between the centers of the
valence and the conduction band, and Ω is the volume of
the unit cell. In order to solve the BS equation, we use a
local potential which is constant in the reciprocal space
(V0). The coordinates fQ; p; p0g are the center-of-mass
momentum and the relative momenta. Setting Q ¼ 0 is
shifting the two parabola such that the centers match.
Summed over the relative momenta p and p0, the two-
particle Green functionG2 has the properties of an electron-
hole susceptibility [called XðQ; zÞ, where z is the complex
energy]. The approximation of the Coulomb potential by a
constant V0 in the reciprocal space allows one to write the
susceptibility XðQ; zÞ as a function of its noninteracting
part Xð0ÞðQ; zÞ,

XðQ; zÞ ¼ Xð0ÞðQ; zÞ
1 − V0

Ω Xð0ÞðQ; zÞ : ð1Þ

The screening length corresponding to the magnitude of
V0 is comparable to the Thomas-Fermi screening length
calculated for 1T-TiSe2 via the plasma frequency [5]. It is
about one half of the nearest-neighbor distance, validating
the local potential approximation, as discussed in a previous
paper [1]. The noninteracting electron-hole susceptibility
Xð0ÞðQ;ωÞ ¼ limδ→0½Xð0ÞðQ;ω − iδÞ� is numerically com-
puted with the CUBA package [14]. The self-energies of
electrons σv and σc and phonons σph are given by

σvðk; zαÞ ¼ D2
X

Q

Z
dω
2π

XðQ;ωÞ

×
NBEðωÞ þ NFD(εcðkþ Qþ wÞ)

zα þ ω − εcðkþ Qþ wÞ
σcðk; zαÞ ¼ D2

X

Q

Z
dω
2π

XðQ;ωÞ

×
NBEðωÞ þ 1 − NFD(εvðk − QÞ)

zα − ω − εvðk − QÞ
σphðQ; zαÞ ¼ g2½XðQ; zαÞ þ XðQ;−zαÞ�: ð2Þ

NFD and NBE are the Fermi-Dirac and Bose-Einstein
distribution functions, D is the local Coulomb interaction
V0=Ω or the electron-phonon coupling g (depending on
whether we calculate the influence of the electron-hole or
electron-phonon correlations on the electronic structure),X
is the spectral function of the electron-hole susceptibility X
or of the acoustic phonon (not shown here; see Ref. [1]), and
zα is the Matsubara frequency. The renormalized phonon
frequency ωr is given by the condition

ω2
r − ω2

0 − Re½σphð0;ωr þ iδÞ� ¼ 0; δ → 0; ð3Þ

where ω0 is the bare phonon frequency taken at the CDW
wave vector at room temperature [15], where the self-energy
correction is small.
Here, we compare these quantities starting from a

semiconducting or a semimetallic bare gap size. We set
the chemical potential via the charge neutrality condition.
The Coulomb potential V0 in Eq. (1) is chosen such that
Xð0; 0Þ diverges at the temperature TX. Then, we calculate
the phonon self-energy and the renormalization [Eq. (3)] in
order to find a temperature TL for which ωr → 0; i.e., the
phonon softens, thereby inducing a lattice instability and
the CDW phase. The parameters V0 and g are optimized
such that the lattice instability temperature TL is equal to
the experimental temperature of the CDW transition Tc.
Finally, we calculate the electron spectral functions of
the valence and the conduction bands. The chemical
potential is set again by the charge neutrality condition.
For bare gaps between −75 meV to 75 meV, the magnitude
ofU ¼ V0=Ω varies between 4.2 and 4.5 eV for semimetals
and between 4.8 to 5.5 eV for semiconductors. The higher
values for semiconductors are consistent with a less-
screened potential. The electron-phonon coupling constant
g ¼ 0.5� 0.1 eV=Å for both cases and compares well with
Motizuki [16] and Monney et al. [17]. It turns out that
TL > TX, as a consequence of Eq. (3) being satisfied for
ωr ¼ 0 at a higher temperature than the divergence temper-
ature of X [1].
Figure 1 shows the electron-hole susceptibilities as a

function of energy for the semimetal (blue curves, bare gap
of −50 meV) and semiconductor (red curves, bare gap of
50 meV) cases and for two different temperatures at Q ¼ 0.
On the top, the real [Fig. 1(a)] and imaginary part [Fig. 1(b)]
of the noninteracting susceptibility are presented, whereas
on the bottom, the real [Fig. 1(c)] and the imaginary part
[Fig. 1(d)] of the interacting susceptibility are shown.
The noninteracting susceptibility X0ðQ;ωÞ is a charac-

teristic quantity calculated for CDW systems [18,19]. Its
imaginary part [Fig. 1(b)] reflects the FS topology. The
positive peak at negative energy (in blue) is characteristic of
a semimetal band structure and occurs at the energy of the
negative gap. For the semiconductor band structure (in red),
ImX0ðQ;ωÞ is nonzero only for ω larger than the gap. Its
real part is the relevant quantity for an instability. Here, the
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peaks are too weak to induce a CDW instability (about 2
orders of magnitude weaker than peaks calculated for
NbSe2, for which the nesting scenario is still debated
[18,20]).
In the interacting susceptibility X [Figs. 1(c) and 1(d)], a

quasiparticle excitation occurs at very low energy. In a

semimetal (in blue), the excitation peak grows with
decreasing temperature until diverging at the critical
temperature TX (solid line) forming a long-lived quasipar-
ticle, the exciton (a condensed electron-hole pair bound by
Coulomb interaction). If the lattice was rigid (no phonon
softening), this divergence would induce the EI phase.
Xð0; zÞ has approximately the form of 1=ðz2 − ω02Þ, where
ω0 is the excitation energy. As in the BCS model, the
fluctuating excitations in the electron-hole continuum are
stable only below the condensation temperature (forming
Cooper pairs in superconductivity and excitons here). For
the semiconductor (in red), however, the peak already
diverges at a nonzero energy above TX (e.g., at TL, the
dashed curves). The exciton peak lays in the gap and
Xð0; zÞ is well approximated by a bosonic Green function
of the form 1=ðz − ω0Þ, preparing a BE condensation as the
temperature decreases and the peak tends towards ω ¼ 0.
But note that there is no exciton condensation here because
the phonon softens at TL > TX.
Figure 2 presents the electron spectral functions in the

semimetal (first column for the valence band and second
column for the conduction band) and the semiconductor
(third column for the valence band and fourth column for
the conduction band) cases for a gap amplitude of 50 meV.
They are calculated 10 K above Tc. In the first row, the
valence-band (VB) and conduction-band (CB) spectral
functions Avðkx;ωÞ and Acðkx;ωÞ are shown as energy
dispersion curves (EDC), x being the direction connecting
the center of the BZ (location of the VB) to its border
(location of the CB). They result from the valence- and
conduction-band self-energies due to electron-phonon
interaction (D ¼ g and X is the phonon spectral function).

FIG. 2 (color online). (a)–(d) Electron spectral functions of the valence and conduction bands for semimetal and semiconductor
scenarios calculated via the self-energies due to electron-phonon correlations. (e)–(h) Same as (a)–(d), but with the contribution of both
electron-hole and electron-phonon correlations to the self-energies. (i)–(l) Electron spectral functions corresponding to (e)–(h) cut by the
Fermi-Dirac function.

FIG. 1 (color online). Electron-hole susceptibilities as a func-
tion of energy for Q ¼ 0. In blue, the susceptibilities result from a
semimetal with a negative gap of −50 meV. In red, the calcu-
lation is done for a semiconductor with a positive gap of 50 meV.
Solid lines are for TX, the exciton condensation temperature.
Dotted lines are for TL > TX, the temperature of the phonon
softening (lattice instability). (a) Real and (b) imaginary part of
the noninteracting susceptibility. (c) Real and (d) imaginary part
of the interacting susceptibility.
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In the second row, the spectral functions are renormalized by
the total self-energy, i.e., the sum of the self-energy due to
phonon interaction and due to electron-hole correlations,
where D ¼ V0=Ω and X is the spectral function of the
electron-hole susceptibility X. In the bottom row, the
spectral functions displayed in false color are cut by
the Fermi-Dirac function, showing only occupied states
as accessible byARPES.The solid lines show the bare bands
fulfilling the charge neutrality condition and the dashed
lines show the position of the Lorentzian fits to the EDC.
From the comparison between the first and the second

row, we conclude that the dominant effect on the electronic
structure is due to electron-hole correlations. For both
semimetal and semiconductor scenarios, the valence-band
spectral function is split into two parts around kx ¼ 0
[Figs. 2(a) and 2(c)]. A peak lays about 0.15 eV above the
Fermi level. As a consequence, the initial holelike parabola
has lost some spectral weight around its top. This feature is
qualitatively similar for both scenarios. For the conduction
band, however, there is a significant difference. For the
semimetal [Fig. 2(b)], the bare conduction band is just
shifted downwards and crosses the Fermi level but for the
semiconductor [Fig. 2(d)], there is a coherent peak above
the Fermi level (about 0.15 eV) in addition to a weaker
incoherent peak crossing the Fermi level. If cut by the
Fermi-Dirac function, the semiconductor coherent peak
vanishes and the spectral functions look very similar in
both scenarios. This similarity is a consequence of the
valence-band spectral weight peak above the Fermi level
[Figs. 2(a) and 2(c)]. In order to conserve the number of
occupied states (charge neutrality), the spectral weight lost
in the valence band has to be compensated by electrons of
the conduction band below the Fermi level. Thus, electron-
hole correlations tend to transfer some spectral weight in
the conduction band below the Fermi level independently
of the initial bare gap (semiconductor or semimetal). From
these considerations, it becomes clear that the comparison
with ARPES experiments does not allow one to decide
about the nature of the initial bare gap. The calculated
softening of the phonon as a function of temperature is
shown in Fig. 3, together with the experimental curves. For
a bare semimetal (blue dots), the renormalization is weak at

high temperature and intensifies over a range of 10 K above
the transition temperature. For a bare semiconductor (red
dots), the renormalization is more regular. This behavior
[given by Eq. (3)] is a direct consequence of the shape of
the susceptibility X in the semimetal or semiconductor
scenario illustrated in Fig. 1. The semiconductor scenario
compares much better with experiments measuring the soft
phonon mode in 1T-TiSe2 by inelastic x-ray measurements
[21] (open black dots) or x-ray thermal diffuse scattering
[15] (triangles). Note that both electron-hole and electron-
phonon correlations cooperate in the phonon self-energy
[Eq. (2)] to drive the transition. Though weaker, the effects
of the electron-phonon correlations on the electron spectral
functions tend to strengthen the effects of electron-hole
correlations. This observation is in agreement with the
model of van Wezel et al. [22] and confirmed experimen-
tally by Porer et al. [23] claiming that both the electron-
hole and electron-phonon coupling plays a significant role
in 1T-TiSe2 and that both effects cooperate to drive the
CDW transition.
Our calculations provide a first direct comparison of the

debated semimetal versus semiconductor scenarios above
the CDW transition temperature in 1T-TiSe2. The results
suggest a new way of considering the problem, more
subtle than the conventional discussions in terms of bare
δ-function bands. On the one hand, as suggested by the
phonon renormalization, which is directly proportional to
the electron-hole susceptibility, this susceptibility should
result from a semiconductor band structure. The electron
spectral function is also influenced by the electron-hole
susceptibility. The renormalized conduction band shows
some spectral weight crossing the Fermi level. These facts
are not contradictory because this spectral weight is an
incoherent part while the coherent peak is positioned above
the Fermi level.
This picture provides a reconciliation of the recent

Letters [5,6] about the nature of the gap in 1T-TiSe2.
By adsorbing water on the surface, Rasch et al. [6] induced
a band bending, the intensity of which is comparable to the
energy position of the coherent peak above the Fermi level
in the semiconductor case [Fig. 2(d)]. Thus Rasch et al.
deduced a semiconducting behavior from the measurement
of the coherent peak. On the other hand, Li et al. [5]
measured a very low carrier density using optical spec-
troscopy and concluded that the compound is metallic. This
very low carrier density at the Fermi level is related to the
incoherent part crossing the Fermi level in the semicon-
ductor case [Fig. 2(d)]. In this sense, the final electronic
structure, taking electron-hole effects into account, has, at
the same time, a semiconductor and a semimetal character.
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FIG. 3 (color online). Phonon softening calculated in the
semimetal (blue dots) and semiconductor (red dots) scenarios.
These calculations are compared to measurements of Holt et al.
[15] (open black circles) and Weber et al. [21] (green triangles).
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