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Disorder-Induced Localization in a Strongly Correlated Atomic Hubbard Gas
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We observe the emergence of a disorder-induced insulating state in a strongly interacting atomic
Fermi gas trapped in an optical lattice. This closed quantum system, free of a thermal reservoir, realizes
the disordered Fermi-Hubbard model, which is a minimal model for strongly correlated electronic solids.
We observe disorder-induced localization of a metallic state through measurements of mass transport.
By varying the lattice potential depth, we detect interaction-driven delocalization of the disordered
insulating state. We also measure localization that persists as the temperature of the gas is raised. These
behaviors are consistent with many-body localization, which is a novel paradigm for understanding
localization in interacting quantum systems at nonzero temperature.
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The impact of interparticle interactions on the localiza-
tion of disordered quantum systems has been the subject
of intense scrutiny for decades (see [1-5] and references
therein). Obtaining new insights into the interplay of
interactions and disorder is critical to improving our
understanding of quantum electronic solids such as the
high-temperature superconducting cuprates and materials
that exhibit colossal magnetoresistance, such as the man-
ganites [4,6,7]. Despite the application of a wide variety of
sophisticated theoretical and numerical approaches, con-
sensus regarding the nature of metal-insulator transitions
and localization in strongly correlated systems has not been
achieved. A recent theoretical approach to these questions
is many-body localization (MBL) [8—11], which overturns
the conventional view holding that materials above zero
temperature have nonzero conductivity in the presence
of interactions. In a many-body localized state, a quantum
system can remain an Anderson-localized insulator at
nonzero temperature because the interparticle interactions
fail to generate thermally activated conductivity.

We investigate localization using an ultracold atomic gas
trapped in a disordered optical lattice. This precisely
controllable system, which realizes the disordered Fermi-
Hubbard model (DFHM) [12]—the minimal model for
strongly correlated, disordered electronic solids—is free of
a heat bath, such as phonons, that can lead to finite
conductivity at nonzero temperature and foils direct tests
of theories such as MBL in the solid state. The seminal
theoretical work by Basko ef al. on MBL [8] explored the
weakly interacting regime of a spinless DFHM; we inves-
tigate the strongly correlated limit which is challenging
for theory and numerical approaches. We probe disorder-
induced metal-insulator transitions using mass transport
measurements. The disorder A, required to localize the gas
and produce an insulating state is determined for different
ratios of the Hubbard interaction to tunneling energies. We
find that increased interactions stabilize the metal against
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localization and lead to an insulator-metal transition. We
also show that localization occurs across a range of thermal
energy densities at fixed disorder strength by varying the
temperature of the gas.

In our experiment, fermionic *’K atoms, cooled below the
Fermi temperature T and trapped in a cubic optical lattice
potential formed from three pairs of counter-propagating
laser beams, play the role of the electrons in a solid [13].
The atoms are confined by a crossed-beam dipole trap that
forms a parabolic potential as shown in Fig. 1. An approx-
imately equal mixture of two atomic hyperfine states
(=|F=9/2,mr=9/2) and 1 =|F=9/2,mp=7/2)) are
used to mimic the spin of the electron.

FIG. 1 (color). Schematic representation of experimental geom-
etry and disordered lattice. The atoms are cooled in a magnetic
trap (copper) and an optical dipole trap formed from 1064 nm
laser beams (gray lines). Optical lattice laser beams (red) super-
imposed on the trap form a cubic lattice potential. A 532 nm
optical speckle field (green) is focused onto the atoms using a 1.1
Jf-number lens (gray hemisphere). Atoms in two hyperfine states
(red and blue spheres) are trapped in the disordered lattice
potential (false color) formed at the intersection of all the laser
beams. A two-dimensional representation of the lattice is shown
for clarity. The imaging direction is along the [111] direction of
the lattice and is indicated by a dashed line.
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In the lattice, the atoms tunnel between adjacent sites and
two atoms on the same site (in different hyperfine states)
interact through a low-energy s-wave collision, thereby rea-
lizing the Fermi-Hubbard model (FHM) [13,14]. Previous
work with ultracold atoms has explored the Mott insulator
(MI) phase [15,16] and transport properties [17,18] for
the FHM. The equivalent of material parameters, such as
the ratio U/t of Hubbard interaction to tunneling energy, are
precisely known and tunable over orders of magnitude by
adjusting the power of the A = 782.2 nm lattice laser, which
controls the lattice potential depth s. We access the metallic
phase in the lattice by employing a range of s such that
U < 12t and by adjusting the number of atoms N and the
geometric mean of the harmonic trap frequency @ so that
the characteristic density p = N(mw?>d>/12t)*? < 5 [19].
The trap leads to a spatially inhomogeneous density profile,
with approximately 0.3—0.7 particles per site in the center
of the clean lattice for each spin state [20].

By disordering the lattice potential using optical speckle
[25,26], we explore the DFHM with ultracold atoms for
the first time. The optical speckle field is produced by
passing a 532 nm laser beam through a holographic diffuser
and focusing it onto the atoms, as in Refs. [25-27]. The
atoms experience a potential proportional to the optical
speckle intensity, which varies randomly in space. The
strength of this disorder is characterized by the average
disorder potential energy A and can be adjusted by varying
the 532 nm laser power. In contrast with experiments on
solids, the disorder is precisely known (via optical micros-
copy) and continuously tunable, from complete absence to
the largest energy scale present.

The disorder causes the “clean” Hubbard model occupa-
tion €, interaction U, and tunneling 7 energies to vary from site
to site in the lattice. The atoms, therefore, realize a single-band
DFHM described by the Hamiltonian H=} ;U;f;z71; —
S olii(EhatiotHe )+ 30, (6 + mw?r? [2)h; ., where i
indexes the lattice sites, ¢, is the operator that creates an atom
on site 7 in spin state 6 = 71, |, (ij) indicates a sum over
adjacent sites, m is the atomic mass, r; is the distance from the
trap center to site i, and 7; , = éjg&m is the number operator.
We work at sufficiently low temperature, such that the atoms
occupy only the lowest energy band. The statistical distri-
butions of Hubbard parameters are given in Refs. [25] and
[28]; the standard deviation of the ¢; distribution is approx-
imately equal to A. Because the speckle beam does not
propagate along a lattice direction, the Hubbard parameters
are fully disordered in three dimensions [28]. We cite the
Hubbard energies and A in units of the atomic recoil energy
Eg = h?/8md? ~ kg - 390 nK, where d = 1/2 is the lattice
spacing, and & and kp are Planck and Boltzmann constants.

To study the influence of interactions and disorder on
transport, we measure the response of the atomic quasimo-
mentum distribution n(g) to an applied impulse. We
developed this method to measure disorder-induced locali-
zation for the Bose-Hubbard model in previous experiments

[26] and achieved quantitative agreement with quantum
Monte Carlo simulations [29]. An external force is applied
to the gas by turning on a magnetic field gradient for 2 ms,
which is short compared with the confining trap period [20].
Immediately following the impulse, the lattice is turned
off in 200 us, and we measure n(q) by band mapping
and absorption imaging after 10 ms time of flight [30]. The
center-of-mass (c.m.) velocity v, ,, of n(g) is determined by
measuring the displacement of the centroid of the imaged
density profile from the case without an impulse.

In the metallic phase, applying an external force induces
a c.m. velocity, which is manifest as an asymmetry in n(q)
and v, ,, # O [Fig. 2(a,i)]. We observe that the introduction
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FIG. 2 (color online). (a) The c.m. velocity of the atom gas
measured after an applied impulse for s = 4 (blue squares), 5 (red
circles), 6 (green triangles), and 7 Ey (orange diamonds). Sample
images used to determine v, ,, are shown in false color for s = 4
Ep for A=0 Ey (i) and A = 1.46 Ep (ii). The field of view
for all absorption images used in this work is 0.54 mm. The
projection of the Brillouin zone onto the imaging plane, which is a
hexagon because of the imaging and lattice-beam geometry,
is indicated using solid black lines. The blue dotted line is the
exponential fit used to determine A, for s =4 Ep; the arrow
indicates A, for s =4 Ep. The error bars are the standard error
in the mean for the 7-9 experimental runs that are averaged for
each data point. (b) Images taken at s = 4 with A = 0 Ey, (iii) and
A =1.46 Ey (iv) without an impulse. The quasimomentum g
projected along the vertical axis in the imaging plane is measured
in units of the maximum allowed quasimomentum in the Brilloun
Zone ¢,,.«- (¢) Traces through images (iii) (solid blue line) and (iv)
(blue shaded region) showing the measured optical depth (OD).
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of disorder obstructs transport, leading to a localized
insulating phase [Fig. 2(a,ii)]. Low-temperature data (i.e.,
0.16 £ 0.01 T in the trap) taken for a range s = 4-7 Ep
(corresponding to U/12¢ = 0.20-0.75) and A = 0 — 1.5 Ep
are shown in Fig. 2(a). At all lattice potential depths,
increasing A causes v, to decrease.

Sufficient A to completely arrest motion, signifying a
metal-insulator transition, is achieved for all s. Localization
in three dimensions has been previously observed for
nonlattice gases using weakly [31] and noninteracting
[27] atoms. The metal smoothly transforms to the insulat-
ing state because the entire continuous energy spectrum of
nonlocalized, single-particle states in the gas can contribute
to v, - As revealed in the images and profiles shown in
Figs. 2(b) and 2(c), disorder has a minor impact on n(g).
The localized insulating state we observe emerge is, there-
fore, qualitatively distinct from a band or Mott insulator—
the quasimomentum distribution is narrow and states at the
band edge are unfilled. A band or Mott insulator, induced
by increasing N and/or s in the absence of disorder, would
display a broader distribution, since n(g) is uniform across
the Brillouin zone for those states. Based on the rms size of
the image shown in Fig. 2(b) and assuming an exponential
density distribution for localized states, we estimate a lower
limit of 2.5 sites for the average localization length.

To quantitatively identify the transition to a localized
state, we measure the characteristic disorder A, required
to completely arrest motion. In a single-band system, all
energy scales are bounded and a finite disorder strength
localizes all (single-particle) states. The A, we measure
corresponds to the average disorder potential energy
required for the mobility edge trajectory to traverse the
band and localize all states in the noninteracting limit.
In the Anderson model, A, is a fixed fraction of the total
bandwidth, and is 67 (16¢) for Gaussian (uniformly)
distributed site energies [32]. A calculation of the mobility
edge trajectory for the lattice we employ, which has a
distribution of site energies sharing properties of both the
Gaussian and uniform cases, is unavailable.

We measure A, as the disorder potential energy necessary
to eliminate v, within the experimental resolution
Vres = 0.05 mm/s. The grey band in Fig. 2(a) shows v,
which is the standard error of the mean in v., when an
impulse is not applied. A, is determined from a heuristic fit
used to smooth the data at fixed s to v, ,, = Ae 2/ 108(4/ )
with A and A, as free parameters. The resolution v
corresponds to a 10 pK thermal velocity, which is 3 orders
of magnitude smaller than all other energy scales—the Fermi
temperature is approximately 200 nK, the temperature of
the gas is roughly 30 nK, and A_./kg ~200-300 nK. Our
determination of A, is, thus, an excellent approximation
to the disorder required to localize the band.

By comparing A measured at different s and interaction
strengths, we observe an interaction-driven insulator-
metal (i.e., delocalization) transition. Figure 3 shows A,
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FIG. 3 (color online). Interaction induced delocalization. The
characteristic disorder strength A_./12¢ is shown for varying
interaction strength U/12¢, which is controlled by tuning the
lattice potential depth s. The blue arrow indicates an interaction-
driven insulator-metal transition. A, varies by less than 20%
across this range, while 7 changes by a factor of 2.2. The error
bars show the uncertainty in the fit to the data in Fig. 2 used to

determine A.. The percolation threshold is shown as a dashed
line, and a linear fit to the data as a red solid line.

normalized by 12¢ for the U/12¢ corresponding to each
lattice potential depth sampled in Fig. 2. The characteristic
disorder and Hubbard energies are normalized to 12f,
which is the maximum kinetic energy for single particles.
We observe that as U/12¢ increases, A./12¢ increases, and
thus, a localized insulating phase can be transformed to a
metallic state by stronger interactions. For a noninteracting
system, A./12¢ would remain fixed as s was varied because
the bandwidth 12¢ (controlled solely by s) determines all
energy scales [32]. The slope of a linear fit to the data is
positive at greater than the six-standard-deviation (in the fit
uncertainty) level. A Monte Carlo uncertainty analysis with
different underlying assumptions indicates that the slope of
the data shown in Fig. 3 is positive at greater than a 99.8%
confidence level [20].

To exclude the observed metal-insulator transition as a
percolation transition, in which particles are confined to
finite spatial regions of energetically accessible sites, we
determine the percolation threshold [29], which is shown
in Fig. 3 as a dashed line and exceeds the measured
A./12t by an order of magnitude at high U/12¢. The
A./12t we measure is approximately a factor of 3—4
smaller compared with a statistical dynamical mean-field
theory (SDMFT) prediction for a metal-insulator transi-
tion [33]. This discrepancy may be explained by the
Bethe lattice geometry and mean-field approximation
employed in Ref. [33] and the presence of the trap in
the experiment.

083002-3



PRL 114, 083002 (2015)

PHYSICAL REVIEW LETTERS

week ending
27 FEBRUARY 2015

0.8

—~ 0.6 JfH» Jr ]
04+ ii‘: oali g

02 S0 05 GOI?JM 05 1.0

Vem (MmM/sec

0.0

T

lat

(nK)

FIG. 4 (color online). Temperature dependence of localization
explored through measurements of v ,, . Data are shown for the
marginally localized case at the lowest temperature with A fixed
to A, =1 Ep at s =4 Ejy (closed circles) and for A = 0.4 Ep
(open circles). Representative images are shown in false color for
gases without an applied impulse for T, = 30 nK (i) and T, ~
70 nK (ii) for A = 1 Ej. Slices are shown through these images
using the scheme from Fig. 2(b) for A = 1 E (black line) and
A = 0.4 Ej (red line) in (iii). The gray band corresponds to our
resolution limit v, for center-of-mass motion, and the red band is
the 95% confidence interval for a linear fit (red line) to the A = 1
Ey data. The error bars represent the standard error for the 12-48
experimental runs that were averaged for each data point.

To explore the temperature dependence of localization,
we vary the temperature of the gas before turning on the
disordered lattice with s =4 Ej, and fixed A. In Fig. 4,
we show measurements of v, for temperatures ranging
from 40 to 150 nK [corresponding to an entropy of kp X
(1.9-3.3) per particle] in the harmonic trap. In order to
account for the compression of this temperature range in
the lattice because of the maximum kinetic energy attached
to the finite bandwidth, we treat the disorder as an overall
chemical potential shift and estimate the corresponding
temperature in the lattice 7', using a self-consistent
Hartree-Fock calculation to match entropy [20]. We fix
A =1 Eg, which is the characteristic disorder A, for
localization at the lowest temperature, in order to maximize
the sensitivity to temperature. For reference, we also show
data with motion present for A = 0.4 Ex.

In both cases, the motion of the gas is insensitive to
temperature. To quantitatively characterize the temperature
dependence in the marginally localized case, we fit the data
at A = 1 Ep to a line. The 95% confidence interval for this
fit overlaps with v, over the full range of temperatures
we sample, implying that the gas remains localized as the
temperature is raised. For these data, v, is at least 3 orders
of magnitude smaller than the temperature and chemical
potential of the gas. Furthermore, the chemical potential

and temperature at the highest T, are approximately 2.7¢
and 2t, leading to minimal occupation at the Brilloun-zone
boundary and less than 2% of the atoms occupying single-
particle localized states that would not respond to the
impulse [20,30]. In this regime, the gas is metallic in the
absence of disorder. The data shown in Fig. 4 are, thus, a
significant constraint that imply many-particle excited
states are localized by disorder.

This behavior is consistent with MBL, which predicts
that the many-particle eigenstates are localized by disorder
across a range of energies in the weakly interacting limit
of the Hubbard model. MBL also predicts that the con-
ductivity, which is analogous to wv., in our system,
vanishes across a span of temperature [8,9]. Our measure-
ment is consistent with this absence of thermally activated
conductivity—the slope of the linear fit in Fig. 4 is
inconsistent with a rise in v, at the 95% confidence level.
Given the lack of a quantitative prediction in the strongly
correlated regime, we cannot rule out nonzero thermal
conductivity at a level several times smaller than .

Future studies in this system may focus on measuring
other MBL predictions such as area laws for entanglement
entropy [11] and the possibility that a many-body localized
state may fail to thermalize, a situation that has profound
consequences for the eigenstate thermalization hypothesis
[34,35]. Transport phenomena in the MI phase present at
higher s can also be measured. SDMFT for this system
predicts that disorder transforms the MI phase into a
disordered correlated metal [33]. Probing such changes
in transport properties using the impulse method is com-
plicated in the MI regime by the coexisting metallic shell
and localized single-particle states [30] that are occupied
when kT > 12¢. Alternatively, methods that use a
chemical potential imbalance imposed across a channel
may be employed in the future to explore transport in the
MI regime [36] and to probe whether disorder leads to non-
Fermi-liquid behavior in the metallic regime [4].
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