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The intermediate domain of strong-field ionization between the tunneling and multiphoton regimes is
investigated using the strong-field approximation and the imaginary-time method. An intuitive model for
the dynamics is developed which describes the ionization process within a nonadiabatic tunneling picture
with a coordinate dependent electron energy during the under-the-barrier motion. The nonadiabatic effects
in the elliptically polarized laser field induce a transversal momentum shift of the tunneled electron wave
packet at the tunnel exit and a delayed appearance in the continuum as well as a shift of the tunneling exit
towards the ionic core. The latter significantly modifies the Coulomb focusing during the electron
excursion in the laser field after exiting the ionization tunnel. We show that nonadiabatic effects are
especially large when the Coulomb field of the ionic core is taken into account during the under-the-barrier
motion. The simple man model modified with these nonadiabatic corrections provides an intuitive
background for exact theories and has direct implications for the calibration of the attoclock technique.
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In intense near-infrared laser fields, when the photon
energy is much less than the ionization energy of the atomic
system, the atomic ionization happens via multiphoton
processes [1,2]. The multiphoton and tunneling regimes
have been identified as well-known asymptotic limits [3],
with the latter following an especially intuitive tunneling
picture. In this case the laser field is so strong that the
bound electron tunnels with a constant energy through the
(quasi)static potential barrier formed by the laser field and
the atomic potential (the horizontal channel in phase space
at a constant energy of the ionizing electron [4–6]; see
Fig. 1). The quasistatic (adiabatic) dynamics is character-
ized by an asymptotically small Keldysh parameter γ ≪ 1,
where γ ¼ κω=E0, Ip ¼ κ2=2 is the ionization potential, E0

the laser electric field strength, and ω the laser angular
frequency. In the opposite asymptotic limit γ ≫ 1 of the
multiphoton regime, the electron release from the bound
state happens at the atomic core via overcoming the atomic
potential due to the absorption of multiple laser photons by
the bound electron (the vertical channel in phase space at a
constant coordinate of the ionizing electron [5,6]; see
Fig. 1). The strong-field ionization in both regimes can
be described analytically in the strong-field approximation
[3,7,8] and via the imaginary time method [9–13], which is
also applied for arbitrary Keldysh parameters [14–18]. It is
straightforward to deduce from the quasistatic theory the
parameters of the tunneling picture, such as the coordinate
of the tunnel exit and the electron momentum at the tunnel
exit [19]. However, it is not clear how the intuitive picture is
gradually transformed from the horizontal tunneling [4] to
the vertical multiphoton channel within the intermediate
regime. While the intuitive picture is appealing per se, it
also allows us to predict how the tunneling exit coordinate
and the electron momentum at the exit are qualitatively

modified in the nonadiabatic domain. The latter is impor-
tant because these parameters are required for the attoclock
calibration [19–22]. In the attoclock [20] the time of the
electron’s appearance in the continuum is mapped onto
the angle of the photoelectron emission. For its calibration
the emission angle should be corrected by the amount
originating from Coulomb focusing which is determined by
the tunneling parameters.
Recent experimental investigations of nonadiabatic

effects for the attoclock calibration indicated no significant
impact of these effects on the distribution of the photo-
electron momentum up to a Keldysh parameter of γ ≈ 3.8
[6], and the difference between the quasistatic calculations
and the experimental results was attributed to a tunneling
delay time. However, numerical simulations [23] and an R-
matrix theory calculation [24,25] concluded that the
observed photoelectron emission momentum distribution
is explained by a vanishing tunneling time delay when the
Coulomb field of the atomic core is taken fully into
account [26].
In this Letter we put forward an intuitive picture for the

intermediate regime of ionization, describing it as tunneling
through a classically forbidden region with a coordinate
dependent rising energy due to the time-dependent barrier.
The picture allows us to deduce in a simple way the
characteristics of the under-the-barrier motion and shows
how the semiclassical theory of Ref. [6] should be remedied
to describe the observed photoelectron spectra, explaining
the discrepancy between results of Refs. [6] and [26].
Nonadiabatic effects induce a transversal momentum shift
of the electron at the tunneling exit and a delayed
appearance in the continuum as well as a shift of the
tunneling exit coordinate towards the ionic core. While for
the asymptotic momentum distribution in the case of a
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short-range atomic potential all three effects almost com-
pensate for each other, the effect of the shift of the tunneling
exit dominates when the Coulomb field of the atomic core
is accurately taken into account in the under-the-barrier
motion. This has a decisive impact on the Coulomb
focusing during the motion in the continuum after tunnel-
ing and, consequently, on the final momentum distribution
and on attoclock calibration.
For the analysis we employ the strong-field approxima-

tion (SFA) with the saddle point approximation including
nonadiabatic corrections and quantify the effect of non-
adiabatic corrections on the attoclock calibration. For the
sake of simplicity let us begin with modeling the atomic
system with a three-dimensional short-range potential Vs.
The ionization dynamics is described by the Hamiltonian

H ¼ p̂2=2þ VsðrÞ þ r ·EðtÞ; ð1Þ

where p̂ is the momentum operator, EðtÞ ¼
−E0ðcosωt; ϵ sinωtÞ the laser field of elliptical polariza-
tion with laser ellipticity ϵ (atomic units are used through-
out the Letter). According to SFA the ionized wave packet
in momentum space at some time t, when the laser pulse is
turned off, reads [2]

ψðp; tÞ ¼
Z

t

−∞
dt0hpþAðt0ÞjVsjϕbi

× exp½−iSLðt; t0;pÞ þ iIpt0�; ð2Þ

with the constant matrix element of the short-range
potential hpþAðt0ÞjVsjϕbi and the bound state jϕbi.
SLðt; t0;pÞ ¼

R
t
t0 d~tEð~t;pÞ is the classical action of the

active electron in the laser field, Eðt;pÞ≡ pðtÞ2=2 ¼ (pþ
AðtÞÞ2=2 the energy of the electron in the laser field with
the asymptotic electron momentum p and the laser vector
potential AðtÞ, EðtÞ ¼ −∂tAðtÞ. We assume that the
photon energy of the laser field is much smaller than the
ionization (Ip) and ponderomotive (Up ¼ E2

0=2ω
2) ener-

gies ω ≪ Ip, Up. Then the integral in Eq. (2) can be solved
via the saddle point method (SPM), which defines the
initial time of ionization t0 ¼ ts via Eðts;pÞ ¼ −κ2=2,
describing the energy conservation when the electron starts
to leave the bound state. This, here called saddle time, ts, is
complex due to the negative binding energy −κ2=2. The
motion of the electron can be described by two steps. The
first step is a motion in the classically forbidden region
where the time runs from the initial complex saddle time to
the real time axis. When the time reaches the real axis at te,
representing the tunnel exit time, the free motion in the
laser field begins and from that time on runs along the real
axis. The ionization probability does not change after t > te
and, therefore, is determined by the exponent

Γ ∼ jψðp; tÞj2 ∼ exp½−2iSLðte; ts;pÞ þ 2iIpts�; ð3Þ

which is a function of the final momentum p or, equiv-
alently, of the tunneling phase [14]. Thus, in the physical
situation suitable for the SPM (ω ≪ Ip; Up), at any value of
the Keldysh parameter, during the ionization the electron
penetrates the classically forbidden region. This dynamics
can be termed tunneling, although at large γ the energy is
not conserved during the tunneling, as we will show below.
We generalize the quasistatic picture of tunneling into

the nonadiabatic regime as follows. While in the quasistatic
case the electron energy is constant during tunneling, in the
nonadiabatic regime the electron gains energy in the course
of the under-the-barrier motion. In the quasistatic case [see
Fig. 1 (ionization at the peak of the laser field is considered,
te ¼ 0, px ¼ 0)], the electron tunnels through the effective
potential VeffðxÞ ¼ Vs − xE0 (which can be defined in a
gauge-invariant manner—see Ref. [27]; solid green line) on
a constant energy level (long-dashed black line) E ¼ −Ip,
where E ¼ E∥ þ Veff is the total energy, with the kinetic
energy along the tunneling direction E∥ ¼ pxðtÞ2=2 ¼
AðtÞ2=2 ¼ E2

0t
2=2 (negative during the under-the-barrier

motion). In the nonadiabatic case the electron energy is not
constant during the motion in the classically forbidden
region and depends on the coordinate along the tunneling
direction:
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FIG. 1 (color online). The tunneling barrier of ionization in the
case of a short-range atomic potential (solid, green line). The
electron energy during the under-the-barrier motion: the non-
adiabatic (short-dashed, blue line) and adiabatic (quasistatic)
pictures (long-dashed, black line) in a (a) linearly or (b) circularly
polarized laser field. The horizontal channel (tunneling) and
the vertical channel (multiphoton ionization) are shown sche-
matically by dashed green arrows. The interpretation of non-
adiabatic tunneling as absorption of photons followed by
tunneling with higher energy is shown with the (dot-dashed,
red arrows) pathway in (a).
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EðxÞ ¼ E∥ðxÞ þ VeffðxÞ; ð4Þ

which can be derived accurately by calculating the electron
kinetic energy in the laser field E∥ðtÞ ¼ AxðtÞ2=2 ¼
½ðE0=ωÞ sinðωtÞ�2=2 and taking into account the electron
trajectory under the barrier xðtÞ ¼ R

t
ts
dt0Axðt0Þ. As the short-

dashed blue lines in Fig. 1 shows, the electron energy
increases during tunneling, which induces the shift
of the tunneling exit towards the atomic core. In a linearly
polarized laser field the coordinate dependence of
the energy level can be calculated analytically (see
Ref. [28]): EðxÞ¼ κ2½1− ð

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2þ1

p
− γκx=2nÞ2�=2γ2−xE0,

with n ¼ Ip=ω. In this way one can represent the
strong-field ionization in the low-frequency regime
(ω ≪ Ip; Up) as tunneling with a coordinate dependent
energy, which is due to the electron energy gain from the
varying barrier. We have estimated the shift of the exit
coordinate towards the atomic core due to nonadiabatic
effects via xe ¼

R te
ts dtAxðtÞ ¼ xe;qs − δx, with the exit

coordinate in the quasistatic case xe;qs ¼ κ2=2E0 and the
nonadiabatic correction δx ¼ ð1 − ð4ϵ2=9ÞÞðγ2=4Þxe;qs;
see Ref. [28]. As Fig. 2(b) shows, the coordinate of the
electron’s appearance in the continuum in the nonadiabatic
regime is smaller in comparison to the quasistatic case,
however, it increases with larger γ.
The intuitive picture of Fig. 1 not only indicates

the change of the tunneling exit due to nonadiabatic effects
but can also hint at how the ionization probability is
modified. The tunneling probability in Eq. (3) can be
represented for γ ≲ 1 as follows (for a linearly polarized
field) [28]:

Γ ∼ exp

�
2i

�Z
xe

xi

px(tðxÞ)dx

−
Z

te

ts

�
pxðtÞ2
2

− xEðtÞ
�
dtþ Ipts

��
; ð5Þ

where EðtÞ ¼ −ex⋅EðtÞ. In the static, pure tunneling case
the last two terms of the equation cancel due to energy
conservation, whereas in the pure multiphoton regime of
large γ, the last term dominates and gives the well-known
Γ ∼ In rule, with the laser intensity I and n ¼ Ip=ω. In the
intermediate regime that is considered here, all three terms
contribute. For γ ≲ 1, a modified tunneling exponent can be
derived [28],

Γ ∼ exp

�
2ið1þ γ2=5Þ

Z
xe

xi

pxðtðxÞÞdx
�

ð6Þ

where the leading order correction due to the last two terms
of Eq. (5) is included. As the exponent in Eq. (6) is
proportional to

R
xe
xi
px(tðxÞ)dx, the ionization in the

intermediate regime γ ≲ 1 can again be called tunneling.

The area between the potential barrier and the energy level
in Fig. 1 can qualitatively indicate the ionization proba-
bility. Moreover, one can give a rule of thumb for the
ionization rate in the γ ≲ 1 region, describing it as ~n-photon
absorption followed by static tunneling at higher energy
E ¼ −Ip þ ~nω [see the red path in Fig. 1]:

Γ ∼ I ~n exp

�
−
Z

xe

xi

pqsðxÞdx
�
; ð7Þ
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FIG. 2 (color online). Ionization in a laser field with ellipticity
of ϵ ¼ 0.87. (a) The asymptotic momentum distribution and the
corresponding quasistatic result are shown as a dashed ellipse for
γ ¼ 1. (b) The exit coordinate vs the Keldysh parameter. (c) The
most probable transverse momentum at the tunneling exit p⊥e vs
the Keldysh parameter. (d) The complex time contour during
tunneling in the Coulomb potential (the red, solid line) and the
zero-range potential (black, dashed line) for E0 ¼ 0.1 a:u: (the
arrows show the integration direction). (e) The nonadiabatic time
delay te vs the Keldysh parameter at E0 ¼ 0.02 a:u: (f) The
emission angle of the most probable photoelectrons vs the
Keldysh parameter. In (b), (c), and (f) the nonadiabatic case
for the Coulomb potential (the red, solid line), the quasistatic case
in the Coulomb potential (the black, long-dashed line), and the
nonadiabatic case in the zero-range potential (the blue, short-
dashed line) are plotted. In (f) only the nonadiabatic momentum
shift at the tunnel exit (the green, dot-dashed line) is taken into
account in the otherwise quasistatic case of a zero-range
potential, and experimental data of Ref. [6] are displayed as
black dots.
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with effective photon number ~n ¼ δE=ω, energy change
during the under-the-barrier motion δE ¼ ðxe;qs − xeÞE0,
and pqsðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−xE0 − ð−Ip þ ~nωÞp

. A comparison of
Eqs. (6) and (7) with the numerically evaluated exact rate
of Eq. (3) is shown in Ref. [28].
Since the nonadiabatic corrections raise the energy level,

the tunnel exit shifts closer to the atomic core, which
increases the ionization probability, displayed as a shrink-
ing of the mentioned area. Furthermore, in the case of
circular polarization, part of the energy of the tunneling
electron is transferred into the transversal direction (see
below), decreasing the longitudinal energy E∥ and, con-
sequently, the energy level EðxÞ, which yields a smaller
tunneling probability compared to the linear polarization
case; see Fig. 1.
We can also deduce from Eq. (6) the most probable

momentum of the electron at the tunnel exit which
corresponds to the minimum of ImfSLðte; ts;pÞ − Iptsg.
In contrast to the quasistatic tunneling case (γ ≪ 1), the
tunneling probability Γðp⊥eÞ at an intermediate γ ∼ 1 has a
maximum at a nonzero value of the transverse momentum
p⊥e ¼ ϵγκ=6; see Fig. 2(c). An order of magnitude
estimation confirms that the nonvanishing momentum at
the tunnel exit is due to the nonvanishing transversal
electric force of the rotating field of the elliptically
polarized laser field E⊥ðτkÞ ∼ ϵE0γ. In fact, the transversal
force induces the momentum change during tunneling
Δp⊥ ∼ E⊥ðτkÞτk ∼ ϵγκ, with the Keldysh time τk ∼ γ=ω ¼
κ=E0. For the most probable tunneling electron trajectory,
this momentum change has to be compensated for by a
transversal momentum in the opposite direction at the ionic
core, yielding at the tunnel exit the electron transverse
momentum in the direction of the transverse force. It is very
similar to relativistic tunnel ionization, where the trans-
versal Lorentz-force is due to the magnetic field component
[27,29]. The momentum shift due to nonadiabatic effects is
also visible in the asymptotic momentum distribution at the
detector. In the static model the maximal final momentum
is pf ∼ ϵE0=ω, whereas in the nonadiabatic regime the
momentum shift during tunneling is added, yielding
pf ∼ ϵE0=ωþ p⊥e; see Fig. 2(a).
While the simple case of a short-range atomic potential

was suitable to describe the qualitative modification of the
tunneling picture in the case of nonadiabatic ionization, the
effect of the Coulomb field of the atomic core should be
taken into account for quantitative predictions [30–33]. In
the case of the Coulomb atomic potential VCðrÞ ¼ −Z=r,
where Z is the charge of the ionized atom, the ionized wave
packet in the remote future can be given via

ψðpÞ ∼
Z

∞

−∞
dt

Z
d3rEðtÞ

× exp

�
−iSLCðr; tÞ þ

Z
κ
ln xþ iIpt − κr

�
; ð8Þ

where the second term in the exponent arises from the SFA
matrix element and further terms from the bound state wave
function [28]. SLC is the classical action in the laser and the
Coulomb field and fulfills the Hamilton-Jacobi equation:

−∂tSLC ¼ ð∇SLCÞ2=2þ VCðrÞ þ r ·EðtÞ: ð9Þ

The four-dimensional integral in Eq. (8) can be solved with
the saddle point method that yields the saddle point
conditions for the initial time and the coordinate of the
ionizing electron [28]. From the latter the initial coordinate
and the initial velocity are determined as a function of the
initial time ts, with complex values for the saddle time and
the coordinate. The latter is used to calculate the electron
trajectory (under the barrier and outside the barrier) by
numerically solving Newton equations of motion in the
Coulomb and laser fields and finding the final most
probable momentum. To understand how the final momen-
tum is modified, we analyze the modification of the
electron parameters when appearing in the continuum.
For the most probable trajectory, the electron leaves the
barrier when the coordinate becomes real (ImfxðteÞg ¼ 0)
and the electron velocity along the tunneling direction is
vanishing _xðteÞ ¼ 0 [28]. These conditions define the
coordinate of the tunnel exit, yielding the Coulomb-
corrected exit xðteÞ and the transversal exit momentum
_yðteÞ; see Figs. 2(b) and 2(c).
The reduction of the exit coordinate compared to the

zero-range potential case can be understood via the
attractive longitudinal Coulomb force which decreases
the tunneling distance. Transversally the Coulomb and
the laser force have opposite signs and compensate for each
other such that the required initial momentum to return to
the real axis is smaller for the Coulomb potential than for
the zero-range potential case. In total, the under-the-barrier
trajectory is more focused along the main tunneling
direction due to the Coulomb force of the atomic core.
There is one property of the nonadiabatic under-the barrier
motion in the case of a Coulomb potential which is
qualitatively different from the case of a short-range atomic
potential: in the most probable trajectory, the electron starts
leaving the bound state before the peak of the laser field but
exits the barrier after the maximum of the laser field [see
Figs. 2(d) and 2(e)]. This induces a nonadiabatic time delay
te − t0, where t0 corresponds to the peak of the laser field,
which can be equivalently described by a longitudinal
momentum at the tunnel exit. It vanishes in the limit γ ≪ 1
(at E ≪ Ea)—see Fig. 2(e)—and is of different origin than
the tunneling time delay [34–36]. The nonadiabatic time
delay is due to two factors: the ionization barrier is
changing during the tunneling formation in the nonadia-
batic case, and the bound state is not localized in the case of
a Coulombic atomic potential [28].
Now we turn to the question of attoclock calibration. For

this purpose one has to accurately take into account
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Coulomb focusing during the electron propagation in the
continuum after exiting the ionization barrier which affects
the photoelectron emission angle. We use the calculated
exit coordinate, the transverse momentum shift at the exit,
and the exit time as starting conditions for the continuum
motion. In Fig. 2(f) we show that with our simple model the
experimental data on the asymptotic emission angle can be
reproduced if nonadiabatic corrections and the Coulomb
field for the under-the-barrier motion are accounted for.
Note that the shift of the tunneling exit closer to the core in
the nonadiabatic case increases the Coulomb focusing in
the continuum, whereas the initial transverse momentum
counteracts it. While in a short-range atomic potential these
two effects compensate for each other, in the case of a
Coulomb atomic potential the first contribution dominates.
The impact of the nonadiabatic time delay on the photo-
electron emission angle is even smaller [28].
In conclusion, an intuitive model for the intermediate

regime of tunneling and multiphoton ionization has been
developed. This way the photoelectron momentum distri-
bution in the recent attoclock experiments is explained
mostly by Coulomb focusing due to a displacement of the
tunnel exit and without invoking the tunneling time delay.
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