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We analyze the power counting of two-body currents in nuclear effective field theories (EFTs). We find
that the existence of nonperturbative physics at low energies, which is manifest in the existence of the
deuteron and the 1S0 NN virtual bound state, combined with the appearance of singular potentials in
versions of nuclear EFT that incorporate chiral symmetry, modifies the renormalization-group flow of the
couplings associated with contact operators that involve nucleon-nucleon pairs and external fields. The
order of these couplings is thereby enhanced with respect to the naive-dimensional-analysis estimate.
Consequently, short-range currents enter at a lower order in the chiral EFT than has been appreciated up
until now, and their impact on low-energy observables is concomitantly larger. We illustrate the changes in
the power counting with a few low-energy processes involving external probes and few-nucleon systems,
including electron-deuteron elastic scattering and radiative neutron capture by protons.
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Effective field theories (EFTs) describe physics at low
momenta—specified by the soft scale Q—where the fields
and symmetries out of which they are constructed are well
defined and make sense. Q is small in comparison to the
natural ultraviolet (UV) cutoff of the EFT, the hard scaleM,
which corresponds to the energy region where the EFT’s
degrees of freedom no longer describe the physics. As long
as Q < M, the EFT provides an expansion of observables
in powers of Q=M. To avoid explicit sensitivity to the
physics at the hard scale M, EFTs are regularized and
renormalized. In the Wilsonian formulation [1] we regu-
larize by means of a UV cutoff Λ that serves as an explicit
separation between low- and high-energy physics. The UV
cutoff is not the natural cutoff M but rather a theoretical
device for analyzing the EFT, and we must make sure that
calculations do not depend on Λ; i.e., we renormalize the
theory. By reducing the cutoff fromM to Qwe can analyze
the evolution of the EFT couplings and determine their
relative importance at low energies.
The Wilsonian renormalization group (RG) is a well-

established tool in the context of EFTs where the expansion
is strictly perturbative [2]—the standard model, chiral
perturbation theory (χPT), QED below the weak scale—
and helps to explain why these theories work [3]. However,
over the last 20 years an EFT has been developed for
nuclear physics, in which already at leading order (LO) the
EFT two-nucleon amplitude contains poles (bound states)
and the potentials are singular, behaving as 1=r3 as r → 0.
This provokes novel questions about the meaning of
renormalization in this context, questions that have led
to much controversy [4–8] and new approaches [9–14]. In
this Letter, we examine the matrix elements of electroweak
current operators in nuclear EFTs. We show how RG
invariance can be used to determine the order at which these

operators enter the EFT expansion for the electromagnetic
or weak-nuclear currents by which nuclei couple to
electrons, photons, and neutrinos. We demonstrate that
naive dimensional analysis (NDA) underestimates the role
of these current operators, in essence because it neglects
their anomalous dimension.
This has significant implications for the theory of

processes including elastic and inelastic electron-deuteron
and electron-trinucleon scattering [15,16], the proton
fusion reaction pp → deþνe [17] and muon capture on
deuterium and 3He [18–20]. Until now, the most sophis-
ticated nuclear EFT calculations of these processes have
invoked NDA, since all have employed χPT power count-
ing to organize nuclear operators. (See Ref. [21] for a recent
review.) The results of Refs. [15–20] have implications
for the structure of light nuclei, solar models, and
precision tests of the standard model. Here, we argue
that short-distance contributions to the current operators
used therein are actually significantly more important than
was appreciated in these works. In particular, we show that
RG invariance requires that in most Gamow-Teller or M1
transitions in few-nucleon systems the short-distance
contribution enters at least one order earlier than is
predicted in the χPT power counting originally suggested
by Weinberg [22,23].
In EFT, observable quantities do not depend on the

choice of the cutoff. This can be realized by imposing the
cutoff independence of (here, on-shell) matrix elements

d
dΛ

hΨ0jOEFTjΨi ¼ 0; ð1Þ

with OEFT an EFT operator, and Ψ (Ψ0) the initial- (final-)
state EFTwave functions. For concreteness, we assume that
OEFT is a component of a nuclear (four-) current, which
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depends on the momentum of the probe OEFT ¼ OEFTðqÞ.
Note that Refs. [24,25] already formulated RGs akin to
Eq. (1) for NN matrix elements of OEFT, although no
conclusions regarding the chiral EFT (χEFT) power count-
ing were drawn. See Refs. [6,26,27] for applications of this
RG to the two-nucleon potential.
χEFT operators contain one-body, two-body, three-body,

etc. contributions—separated according to how many
nucleons participate directly in the interaction with the
external probe. Two-body operators can be subdivided into
pion-range and contact parts (but see also below)

OEFT ¼ O1B þO2B;π þO2B;C þ � � � : ð2Þ
In what follows, we focus on the two-body operators,
which in general are the dominant correction to the one-
body piece. The results can be generalized to higher-body
current operators. ForO2B;π the interaction among nucleons
is mediated by pions. In general, the power counting of this
piece is straightforward: we simply count the powers of
Q≡ q; mπ;p (with mπ the pion mass and p any nucleon
momenta on which O depends) in each piece of the
operator and assume they are made up by powers of the
breakdown scale M in the coefficient of that part of OEFT.
In other words, we assume NDA. This leads straightfor-
wardly to the conclusion that O2B;π is typically suppressed
relative to the one-body contribution, as first articulated
in Refs. [28,29]. It also produces a O2B;π which—up to
contact-term pieces—operates at a range r ∼ 1=mπ .
IfO2B;π has divergent parts, those will appear in the final

answer as contributions of contact range. They will then
depend on a regularization scale. But that regularization
scale can be kept distinct from the scale Λ used to
regularize the Schrödinger equation. Furthermore, such
contact pieces of O2B;π will have at least the NDA order of
O2B;C. They cannot produce the enhanced-over-NDA
contact-range currents that are our concern here.
Power counting for O2B;C is more subtle, but a few

simplifications help us determine it. First, we only have to
consider the leading-order piece of this part of the operator:
subleading contact-range currents are trivially suppressed
by the extra powers of Q contained in the operators.
Second, O2B;C cancels the cutoff dependence of O1B and
O2B;π , yet the two-body piece is suppressed with respect to
the one-body. Thus, we can simply ignore O2B;π at lowest
order. This is still true even if we promote the pion-
exchange currents by one order (as would happen if we
adopted the power counting that justifies the iteration of
one-pion exchange in the leading-order NN potential in
Ref. [6]). This yields the following RG equation for the
leading piece of O2B;C:

d
dΛ

hΨ0jOð0Þ
2B;CjΨi ¼ −

d
dΛ

hΨ0jOð0Þ
1B jΨi þ � � � ; ð3Þ

where the dots indicate the higher-order terms. The leading
O2B;C most often contains no powers of the small scale (but

see the example of the charge operator below), so here we

write it schematically as Oð0Þ
2B;C ¼ C0ðΛÞδð6ÞΛ ðr0; rÞ, where

the subscript indicates that the δ function is also regulated at
scaleΛ. The quantum numbers of the current will be carried
by an operator, which we have not written here.
The (leading) renormalization-group invariance of the

current matrix element is now encoded in a differential
equation for C0ðΛÞ, which is

d
dΛ

½C0ðΛÞhΨ0jδð6ÞΛ jΨi� ¼ −
d
dΛ

hΨ0jOð0Þ
1B jΨi: ð4Þ

This is an inhomogeneous first-order differential equation,
although in practice we can ignore the right-hand side.
Given a boundary condition it has a unique solution, which
determines the power counting of O2B;C and, concomi-
tantly, its matrix elements.
The boundary condition results from the observation that

if we set the cutoff to be the size of the natural cutoff of the
theory, i.e., Λ ¼ M, then C0 can only scale withM. We take
C0 to be a coupling of inverse mass dimension d, where that
dimension is determined by the particular operator it
multiplies, and so we have C0ðMÞ ∼M−d. This is NDA
applied at the scale M. In many EFT applications, one is
interested in estimating the size of C0ðΛÞ prior to any
examination of data, and this naturalness assumption
provides a way forward without which the EFT power
counting cannot be determined.
Once this boundary condition is chosen, Eq. (4) deter-

mines C0ðΛÞ for any Λ. Although the equation can be
integrated in two directions, the standard practice is to
evolve the couplings from Λ ∼M to Λ ∼Q to find out how
integrating high-momentum modes out of the theory affects
the size of the EFToperators that must compensate for their
removal. In this view, the EFT results from infrared RG
evolution of a more fundamental theory. In practice, χEFT
calculations are carried out with a cutoff Λ that lies in
between the high-energy scale of χPT,M ≈ 1 GeV, and the
soft scales Q ≈ 150 MeV. Since the operators in question
often have large inverse mass dimension, understanding
their running from M to these lower scales has significant
practical importance.
Now, if the wave functions jΨi and jΨ0i are plane waves,

then the matrix elements appearing in Eq. (4) have no
dependence on Λ and it reduces to ½dC0ðΛÞ�=dΛ ¼ 0. This,
together with the assumption that C0ðMÞ is natural with
respect to the scale M means that C0ðΛÞ ∼M−d for all Λ.
This is the power counting on which χEFT for few-nucleon
systems has been based. Such a power counting is valid if
the solutions for nuclear wave functions are plane waves or
reduce to plane waves in the UV region. (For example, the
subleading corrections to naive dimensional analysis that
are present in the UV region in the case of Coulombic wave
functions do not alter the LO results that we derive here.)
However, if jΨi and jΨ0i do not behave like plane

waves at momenta ≫ Q, then in general we will have
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hΨ0jδð6ÞΛ jΨi ∼ Λa, with the dimensions of the matrix
element made up by soft scales Q. Using Eq. (4) to evolve
the value of C0ðΛÞ to the soft scale, Q we find the infrared
enhancement (provided that a > 0),

C0ðΛ ∼QÞ ∼ 1

Md−aQa : ð5Þ

Consequently the contact-range operator receives a pro-
motion of a orders in the EFT expansion of O in powers of
Q=M; −a is the anomalous dimension of C0 in this EFT
and is nonzero because of the strong interactions in the
nuclear wave functions. The value of a is independent of
how many powers of the soft scales q and mπ the operator
carries and so is the same for higher-order coefficients in
the expansion of O2B;C in powers of Q. For instance,
nothing in the above analysis changes if the operator is
hp0j ~OCðq;ΛÞjpi ¼ MðΛÞβ × q, with ~β an arbitrary vector.
The coefficient MðΛÞ will then also be enhanced by the
factor 1=Qa with respect to the NDA result.
The power counting enhancement can be determined by

examining the behavior of the distorted wave functions jΨi,
jΨ0i at short distances. In order to demonstrate this, we
choose a specific regularization of δð6Þ

h~r0jOð0Þ
2B;Cj~ri ¼ C0ðRÞ

δðr − RÞ
R2

δðr0 − RÞ
R2

Xðr̂; r̂0Þ; ð6Þ

withX referring to the nonradial piece of the operator. Here,
we have introduced a coordinate space cutoff R that is
related to the Λ value of the previous paragraphs via
R ∝ 1=Λ. The proportionality constant does not affect
the value of a.
Similarly, we are not interested here in the numerical

factor (reduced matrix element) generated by the matrix
element of Xðr̂; r̂0Þ between the angular pieces of the
nuclear wave functions. If we write them as

Ψ0ð~r0Þ ¼ u0ðrÞ
r

Y 0ðr̂0Þ; Ψð~rÞ ¼ uðrÞ
r

Yðr̂Þ; ð7Þ

with Y 0 and Y nonradial pieces containing the dependence
on angular momentum and other unspecified quantum
numbers, then the matrix element yields

hΨ0jδð6ÞΛ jΨi ∝ uðRÞ
R

u0ðRÞ
R

: ð8Þ

Thus, all we need to know is the behavior of the wave at
R ≪ 1=Q to get the anomalous dimension of C0ðRÞ. In
particular, if we assume that

uðRÞ=R ∼ Rb; u0ðRÞ=R ∼ Rc; ð9Þ
the anomalous dimension is −a ¼ bþ c. The problem of
determining the power counting for the leading contact-
operator contribution to nuclear currents is thus reduced to
the simple matter of computing the UV spectral indices b

and c of the EFTwave functions. Here, we analyze only the
leading contact operator, so wave functions computed at
LO in χEFT are adequate for this purpose.
We now illustrate these ideas by examining a few

processes involving the nucleon-nucleon (NN) system.
For concreteness, we will begin by considering electro-
magnetic reactions where the NN system interacts with a
(real or virtual) photon. Consequently, the current operator
has a Lorentz index and must fulfill the Ward identity (i.e.,
the continuity equation)

hJμðqÞi ¼ hΨ0jOμðqÞjΨi; qμhJμðqÞi ¼ 0; ð10Þ

a constraint that has consequences for the contact-range
currents in the charge (i.e., μ ¼ 0) form factor. That
quantity is defined as

jejGCðqÞ ¼ hΨdjJ0ðqÞjΨdi; ð11Þ

where jΨdi is the deuteron wave function and the bar
indicates averaging over spins. The LO operator that
contributes to the charge form factor is the one-body
charge, which in the plane-wave basis reads
hp0jJ01B;LOðqÞjpi ¼ jejδ3ðp0 − p − qÞ. It yields a GC of
order eQ0. Now, Eq. (10) implies that GCð0Þ ¼ 1, but as
long as an energy-independent potential generates jΨdi and
hΨdjΨdi ¼ 1, then hΨdjJ01B;LOð0ÞjΨdi ¼ 1. Consequently
all higher-order contributions to the charge operator must
vanish at q ¼ 0. The pion-range current operator will
satisfy this requirement if constructed using dimensional
regularization and a mass-independent renormalization
scheme (as in Refs. [30–33]), and so the lowest-order,
nontrivial, contact operator that contributes to GC is
DðΛÞq2. This can be thought of as a short-distance
contribution to the deuteron’s charge radius. According
to NDA, it affects GC at OðQ5Þ. However, this does not
take into account the anomalous dimensions stemming
from the wave functions.
In χEFT the LO nucleon-nucleon (NN) potential

behaves like 1=r3 plus a delta-function at short distances.
The singular potential is renormalized by the delta function,
but results in wave functions u and w ∼ r3=4 as r → 0
[34,35]. The power-law exponents in the 3S1-3D1 NN
partial wave are thus b ¼ c ¼ −1=4. This makes the
contribution of DðΛÞq2 slightly bigger: it enters J0

at OðeQ4.5Þ.
If we consider the deuteron magnetic and quadrupole

form factors, the lowest order contact operators take the
schematic form MðΛÞ~β × q and QðΛÞT2ðqÞ (with T2 a
tensor involving two powers of q). According to NDA, they
appear at OðQ4Þ and OðQ5Þ, respectively. As discussed
above, their tensor structure does not affect our RG argu-
ment, so they too receive a slight enhancement, to OðQ7=2Þ
and OðQ9=2Þ, respectively. We note that the magnetic form
factor starts only at OðQÞ, and the relative importance of
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the chiral EFT short-distance contribution there may
explain the difficulties of some models to reproduce the
deuteron magnetic moment (see, e.g., the discussion in
Ref. [36]). The enhancement of the short-distance part of
the quadrupole operator strengthens the argument of
Ref. [15] that this operator is key to accurate description
of GQðqÞ in the low-q2 regime.
For comparison, in the “pionless EFT,” the NN potential

that generates jΨdi operates strictly at r ¼ 0, and so we
have b ¼ c ¼ −1. Our analysis then reproduces the well-
developed power counting of electromagnetic operators in
pionless EFT [37–40]. We include these results in Table I
but do not discuss them further. (The pionless EFT power
counting in the strong sector is derived from the Wilsonian
RG in Ref. [41].)
For radiative capture of neutrons by protons (or equiv-

alently, photodisintegration of the deuteron) at threshold
the M1 transition dominates, and the momentum structure
of the operator is as for the deuteron magnetic moment. The
only difference is that the incoming NN partial wave is 1S0
while the outgoing state is still a deuteron. This is, however,
important, since the LO χEFT wave function in the 1S0
behaves as 1=r at short distances; i.e., we have b ¼ −1.
Physically, this occurs because one-pion exchange, which
is not a singular potential for spin-0 partial waves, is too
weak to generate the unnaturally large scattering lengths in
this channel (a ≈ −23.7 fm), and so a contact interaction—
as in the pionless theory—dominates the r → 0 behavior of
u1S0ðrÞ. Thus, in np → dγ, b ¼ −1 and c ¼ −1=4. The
contact current thus contributes to threshold np capture at
OðQ7=4Þ relative to leading. The enhanced importance of
the short-distance contact current is borne out in explicit
calculations of np → dγ. It is even more noticeable in
calculations of nd → tγ and n3He → 4Heγ [42], where
suppression of the one-body piece of the matrix element
renders the relative importance of different two-body
currents more transparent.
This enhancement by 1.25 powers relative to the NDA

estimate will affect any short-distance operator that

mediates a 3S1↔1S0 transition. In particular, it also occurs
for the solar-fusion process pp → deþνe and for related
processes (e.g., muon capture) that proceed via the
Gamow-Teller operator in the NN system. As in the case
of threshold capture, this enhancement also affects the
relative importance of short-distance pieces of two-nucleon
operators when the NN system is embedded in a three- or
four-nucleon system that undergoes a weak transition (cf.
Refs. [17–20]). We review our results for NN system
processes in Table I.
This enhancement would be even more dramatic for

reactions that involved the transition 1S0 → 1S0, since there
the effect of the short-distance operator increases by two
full orders. (The χEFT power counting for short-distance
operators becomes the pionless EFT counting in this
channel.) Such transitions occur inside, e.g., 3He, when
electrons scatter from that nucleus. The analysis of
Ref. [16] could be revisited in light of this finding, to
see if an improved description of the trinucleon EM form
factors results when the anomalous dimensions of short-
distance operators are accounted for.
We stress that RG invariance means that the modifica-

tions to the power counting we discuss here are, to a
significant extent, independent of the details of the cutoff
function or the numerical value of the cutoff. In particular,
in all contemporary implementations of χEFT the 1S0
channel at LO is dominated by the short-distance potential,
and so the wave function ψ ∼ 1=r for distances between the
breakdown scale and the cutoff. In the S ¼ 1 channels the
situation is more complicated, since the wave functions u
and w do not seem to behave as r3=4 for the distances
at which contemporary χEFT potentials are regulated
[43–45]. However, a more careful analysis [35] shows
that this r3=4 behavior is the first term in an expansion
for u and w that converges up to at least 2 fm, well above
the regulator range used in these potentials. Because of
this, the scaling derived here should be relevant for
contemporary calculations. The extent to which the
corrections to u and w computed in Ref. [35] modify

TABLE I. Power counting of contact-range currents for some observables of interest involving the deuteron and/or 1S0 NN state.
(Note that the order given for the dominant one-body effect pertains to χEFT and not to the pionless EFT.) The reactions we are
considering are electron-deuteron scattering, radiative neutron capture by protons, and proton-proton fusion. The observables we list are
the squared deuteron electromagnetic radius (r2em), the deuteron magnetic dipole (μd) and electric quadrupole moments (Qd), and theM1
matrix element for neutron capture and proton-proton fusion We also list the schematic form of the lowest order two-body contact-range
current operator that contributes to each one of these observables, expressed in the plane-wave basis, where q is the momentum of the
external probe.

Process Matrix element 1B 2B (OC) 2B (NDA) 2B (π) 2B (π)

de → de r2em LO (Q0) DðΛÞq2 N5LO (Q5) N3LO (Q3) N9=2LO (Q9=2)
μd LO (Q1) MðΛÞ~β × q N3LO (Q4) NLO (Q2) N5=2LO (Q7=2)
Qd LO (Q0) QðΛÞT2ðqÞ N3LO (Q5) NLO (Q3) N5=2LO (Q4.5)

np → dγ M1 LO (Q1) MðΛÞ~β × q N3LO (Q4) NLO (Q2) N7=4LO (Q11=4)
pp → de−ν̄e M1 LO (Q0) AðΛÞ~β N3LO (Q3) NLO (Q1) N7=4LO (Q7=4)
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the details of the RG flow of short-distance operators is a
subject for future work.
Another avenue for future work is to use the numerical

behavior of three- (or higher-) body wave functions at short
distance to extend the arguments presented here so as to
derive the modifications of the NDA power counting for
short-range 3N, 4N operators. This exemplifies the power
of RG arguments in nuclear EFT [46–48]. In this work, the
principle of RG invariance, applied to NN matrix elements
of electroweak currents, showed the necessity of modifying
the counting of short-range operators in nuclear EFT to
account for anomalous dimensions. The singular nature of
the potentials that bind nuclei in both χEFT and pionless
EFT makes those anomalous dimensions negative, with the
result that NDA underestimates how important such oper-
ators are. This implies a pressing need for revised χEFT
calculations of electron-deuteron scattering, trinucleon
form factors, threshold radiative capture, and weak reac-
tions in few-nucleon systems, for such enhancements could
have important consequences in observables.

D. R. P. thanks the Theory Group at the University of
Manchester for hospitality during the inception of this
work. Our research was also facilitated by the ESNT
workshop, “Nuclear Forces in Effective Field Theory”.
We are grateful to Mike Birse and Bingwei Long for many
discussions on this subject. We also thank Harald
Grießhammer, Hans-Werner Hammer, and Bira van
Kolck for their input. This work was supported by the
U.S. Department of Energy under Grant No. DE-FG02-
93ER-40756.

*pavonvalderrama@ipno.in2p3.fr
†phillips@phy.ohiou.edu

[1] K. Wilson and J. B. Kogut, Phys. Rep. 12, 75 (1974).
[2] J. Polchinski, Nucl. Phys. B231, 269 (1984).
[3] G. P. Lepage, in Proceedings of TASI’89: From Actions to

Answers, edited by T. DeGrand and D. Toussaint (World
Scientific Publishing Company, Singapore, 1990).

[4] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys.
Rev. C 72, 054006 (2005).

[5] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,
054001 (2006).

[6] M. C. Birse, Phys. Rev. C 74, 014003 (2006).
[7] E. Epelbaum and U.-G. Meißner, Few Body Syst. 54, 2175

(2013).
[8] E. Epelbaum and J. Gegelia, Eur. Phys. J. A 41, 341 (2009).
[9] B. Long and U. van Kolck, Ann. Phys. (Amsterdam) 323,

1304 (2008).
[10] M. Pavon Valderrama, Phys. Rev. C 83, 024003 (2011).
[11] M. Pavon Valderrama, Phys. Rev. C 84, 064002 (2011).
[12] B. Long and C. J. Yang, Phys. Rev. C 84, 057001 (2011).
[13] B. Long and C. J. Yang, Phys. Rev. C 85, 034002 (2012).
[14] B. Long and C. J. Yang, Phys. Rev. C 86, 024001 (2012).
[15] D. R. Phillips, J. Phys. G 34, 365 (2007).

[16] M. Piarulli, L. Girlanda, L. Marcucci, S. Pastore, R.
Schiavilla, and M. Viviani, Phys. Rev. C 87, 014006 (2013).

[17] L. E. Marcucci, R. Schiavilla, and M. Viviani, Phys. Rev.
Lett. 110, 192503 (2013).

[18] J. Adam, Jr., M. Tater, E. Truhlik, E. Epelbaum, R.
Machleidt, and P. Ricci, Phys. Lett. B 709, 93 (2012).

[19] L. E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, and M.
Viviani, Phys. Rev. Lett. 108, 052502 (2012).

[20] D. Gazit, Phys. Lett. B 666, 472 (2008).
[21] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev.

Mod. Phys. 81, 1773 (2009).
[22] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[23] S. Weinberg, Nucl. Phys. B363, 3 (1991).
[24] S. X. Nakamura and S.-i. Ando, Phys. Rev. C 74, 034004

(2006).
[25] A. N. Kvinikhidze and B. Blankleider, Phys. Rev. C 76,

064003 (2007).
[26] M. C. Birse, J. A. McGovern, and K. G. Richardson, Phys.

Lett. B 464, 169 (1999).
[27] T. Barford andM. C. Birse, Phys. Rev. C 67, 064006 (2003).
[28] S. Weinberg, Phys. Lett. B 295, 114 (1992).
[29] J. L. Friar, Few Body Syst. 22, 161 (1997).
[30] S. Kolling, E. Epelbaum, H. Krebs, and U.-G. Meißner,

Phys. Rev. C 80, 045502 (2009).
[31] S. Kolling, E. Epelbaum, H. Krebs, and U.-G. Meißner,

Phys. Rev. C 84, 054008 (2011).
[32] S. Pastore, R. Schiavilla, and J. L. Goity, Phys. Rev. C 78,

064002 (2008).
[33] S. Pastore, L. Girlanda, R. Schiavilla, and M. Viviani, Phys.

Rev. C 84, 024001 (2011).
[34] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,

064004 (2006).
[35] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 72,

054002 (2005).
[36] H. Arenhovel, F. Ritz, and T. Wilbois, Phys. Rev. C 61,

034002 (2000).
[37] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Rev. C

59, 617 (1999).
[38] J.-W. Chen, G. Rupak, and M. J. Savage, Nucl. Phys. A653,

386 (1999).
[39] S. R. Beane, P. F. Bedaque, W. C. Haxton, D. R. Phillips,

and M. J. Savage, in At the Frontier of Particle Physics:
Handbook of QCD, edited by M. Shifman (World Scientific
Publishing Company, Singapore, 2001), Vol. 1.

[40] P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part. Sci.
52, 339 (2002).

[41] K. Harada and H. Kubo, Nucl. Phys. B758, 304 (2006).
[42] L. Girlanda, A. Kievsky, L. E. Marcucci, S. Pastore, R.

Schiavilla, and M. Viviani, Phys. Rev. Lett. 105, 232502
(2010).

[43] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-
Jensen et al., Phys. Rev. Lett. 110, 192502 (2013).

[44] E.Epelbaum,H.Krebs, andU. G.Meißner, arXiv:1412.0142.
[45] E.Epelbaum,H.Krebs, andU. G.Meißner, arXiv:1412.4623.
[46] S. Bogner, T. Kuo, and A. Schwenk, Phys. Rep. 386, 1

(2003).
[47] J. Polonyi and A. Schwenk, Lect. Notes Phys. 852

(2012).
[48] R. Furnstahl and K. Hebeler, Rep. Prog. Phys. 76, 126301

(2013).

PRL 114, 082502 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 FEBRUARY 2015

082502-5

http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://dx.doi.org/10.1103/PhysRevC.72.054006
http://dx.doi.org/10.1103/PhysRevC.72.054006
http://dx.doi.org/10.1103/PhysRevC.74.054001
http://dx.doi.org/10.1103/PhysRevC.74.054001
http://dx.doi.org/10.1103/PhysRevC.74.014003
http://dx.doi.org/10.1007/s00601-012-0492-1
http://dx.doi.org/10.1007/s00601-012-0492-1
http://dx.doi.org/10.1140/epja/i2009-10833-3
http://dx.doi.org/10.1016/j.aop.2008.01.003
http://dx.doi.org/10.1016/j.aop.2008.01.003
http://dx.doi.org/10.1103/PhysRevC.83.024003
http://dx.doi.org/10.1103/PhysRevC.84.064002
http://dx.doi.org/10.1103/PhysRevC.84.057001
http://dx.doi.org/10.1103/PhysRevC.85.034002
http://dx.doi.org/10.1103/PhysRevC.86.024001
http://dx.doi.org/10.1088/0954-3899/34/2/015
http://dx.doi.org/10.1103/PhysRevC.87.014006
http://dx.doi.org/10.1103/PhysRevLett.110.192503
http://dx.doi.org/10.1103/PhysRevLett.110.192503
http://dx.doi.org/10.1016/j.physletb.2012.01.065
http://dx.doi.org/10.1103/PhysRevLett.108.052502
http://dx.doi.org/10.1016/j.physletb.2008.08.008
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1103/PhysRevC.74.034004
http://dx.doi.org/10.1103/PhysRevC.74.034004
http://dx.doi.org/10.1103/PhysRevC.76.064003
http://dx.doi.org/10.1103/PhysRevC.76.064003
http://dx.doi.org/10.1016/S0370-2693(99)00991-0
http://dx.doi.org/10.1016/S0370-2693(99)00991-0
http://dx.doi.org/10.1103/PhysRevC.67.064006
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1007/s006010050059
http://dx.doi.org/10.1103/PhysRevC.80.045502
http://dx.doi.org/10.1103/PhysRevC.84.054008
http://dx.doi.org/10.1103/PhysRevC.78.064002
http://dx.doi.org/10.1103/PhysRevC.78.064002
http://dx.doi.org/10.1103/PhysRevC.84.024001
http://dx.doi.org/10.1103/PhysRevC.84.024001
http://dx.doi.org/10.1103/PhysRevC.74.064004
http://dx.doi.org/10.1103/PhysRevC.74.064004
http://dx.doi.org/10.1103/PhysRevC.72.054002
http://dx.doi.org/10.1103/PhysRevC.72.054002
http://dx.doi.org/10.1103/PhysRevC.61.034002
http://dx.doi.org/10.1103/PhysRevC.61.034002
http://dx.doi.org/10.1103/PhysRevC.59.617
http://dx.doi.org/10.1103/PhysRevC.59.617
http://dx.doi.org/10.1016/S0375-9474(99)00298-5
http://dx.doi.org/10.1016/S0375-9474(99)00298-5
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.001
http://dx.doi.org/10.1103/PhysRevLett.105.232502
http://dx.doi.org/10.1103/PhysRevLett.105.232502
http://dx.doi.org/10.1103/PhysRevLett.110.192502
http://arXiv.org/abs/1412.0142
http://arXiv.org/abs/1412.4623
http://dx.doi.org/10.1016/j.physrep.2003.07.001
http://dx.doi.org/10.1016/j.physrep.2003.07.001
http://dx.doi.org/10.1088/0034-4885/76/12/126301
http://dx.doi.org/10.1088/0034-4885/76/12/126301

