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We present a state-of-the-art determination of the complex valued static quark-antiquark potential at
phenomenologically relevant temperatures around the deconfinement phase transition. Its values are
obtained from nonperturbative lattice QCD simulations using spectral functions extracted via a novel
Bayesian inference prescription. We find that the real part, both in a gluonic medium, as well as in realistic
QCD with light u, d, and s quarks, lies close to the color singlet free energies in Coulomb gauge and shows
Debye screening above the (pseudo)critical temperature Tc. The imaginary part is estimated in the gluonic
medium, where we find that it is of the same order of magnitude as in hard-thermal loop resummed
perturbation theory in the deconfined phase.
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The potential acting between a heavy quark and antiquark
in a thermal medium is a central ingredient in our under-
standing of the strong interactions, described by quantum
chromodynamics (QCD). The bound states it sustains, heavy
quarkonium, are precision probes connecting theory and
experiment [1]. They allow us to test QCD via low temper-
ature spectroscopy [2], as well as through their in-medium
modification [3–5] observed in the quark-gluon plasma
created in relativistic heavy ion collisions. In particular
the open question of melting and regeneration observed at
RHIC and LHC [6] urges a quantitative understanding of
their in-medium behavior.
A wealth of intuition has been accumulated in the past

based, in part, on analogies with Abelian theories [3],
potential modeling [7], and strong coupling approaches
[8]. Lattice QCD at T ¼ 0 tells us [9] that the potential
rises linearly before flattening off due to string breaking.
Perturbation theory on the other hand shows that Debye
screening plays a major role in the deconfined phase.
At T ≳ Tc, reached in current experiments, we expect
that the medium gradually weakens the interaction. How
the transition between the two regimes manifests itself
quantitatively in the potential, however, remained unan-
swered. Because of recent conceptual and methods
developments we are now able to present in this Letter
a first principles determination of the temperature depend-
ence of the static interquark potential in the phenomeno-
logically relevant, i.e., nonperturbative regime around the
phase transition.
The advent [10] of modern effective field theory made it

possible to put the definition of the static potential on a
rigorous mathematical footing. By exploiting the separation
between the heavy quark rest mass and medium scales, a
derivation from a dynamical QCD observable, the real-time
thermal Wilson loop Wðt; rÞ, was achieved

VðrÞ ¼ lim
t→∞

i∂tWðt; rÞ
Wðt; rÞ : ð1Þ

This expression has been evaluated at finite temperature in
hard thermal loop (HTL) resummed perturbation theory
[11] and was found to be complex valued. In the deconfined
phase the real part shows Debye screening, while the
imaginary part is related to the scattering (Landau damp-
ing) and absorption (singlet-octet transition) of gluons from
the medium. Even though at leading order the real part
coincides with the color singlet free energies in Coulomb
gauge, this agreement is already not exact at next-to-
leading order [12]. Calculating the potential to higher order
in perturbation theory is a difficult task [13] and given the
size of the strong coupling and the infrared problems in
gauge theories, it is evident that nonperturbative methods
within QCD, such as lattice simulations, are required. One
challenge we face is that such calculations are performed in
imaginary time without direct access to dynamical quan-
tities, such as Wðt; rÞ.
In Ref. [14] a strategy was laid out how to evaluate the

real-time definition (1) using Euclidean lattice QCD
simulations. It is based on a spectral decomposition

WðτÞ ¼
Z

dωe−ωτρðωÞ↔
Z

dωe−iωtρðωÞ ¼ WðtÞ;

where WðτÞ denotes the Euclidean time Wilson loop
accessible on the lattice. The above expression can be
combined with Eq. (1) to yield

VðrÞ ¼ lim
t→∞

Z
dωωe−iωtρðω; rÞ=

Z
dωe−iωtρðω; rÞ; ð2Þ

in turn relating the values of the potential to the spectral
function ρðω; rÞ, which can in principle be obtained from
lattice QCD.
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The first practical challenge lies in obtaining the function
ρðω; rÞ in Eq. (2) from a finite lattice QCD data set
Wðτn; rÞ; n ¼ 1…Nτ, with statistical errors. Extracting
from it continuous spectral features is an inherently
ill-posed problem, which, however, can be given meaning
by the use of Bayesian inference. In this well established
statistical approach, additional prior information is used to
select a unique solution from an otherwise underdeter-
mined χ2 fit. Unfortunately, the standard methods, such as
the maximum entropy method (MEM) or extended MEM
[15], have been shown [16] to be unreliable in reproducing
the very narrow peak structures present in the spectrum.
Only recently has it become possible to faithfully recon-
struct the functional form of such spectral functions from
Euclidean correlator data with the advent of an improved
Bayesian approach detailed in Ref. [17]. In particular, it is
devoid of the convergence problems inherent in the MEM.
The second challenge is related to the Fourier transform

and the infinite time limit in Eq. (2). Reference [14] noted
that the lowest lying spectral peak will dominate the late-
time evolution and hence represents the potential contri-
butions. A thorough understanding of the time scales
influencing the shape of this spectral feature was however
obtained only later in Ref. [18]. It was established on
general grounds that if a potential picture is applicable, we
have to expect a skewed Lorentzian as the lowest lying
peak in the spectrum

ρ∝
jImVðrÞjcos½Reσ∞ðrÞ�− ½ReVðrÞ−ω�sin½Reσ∞ðrÞ�

ImVðrÞ2þ½ReVðrÞ−ω�2
þc0ðrÞþc1ðrÞ½ReVðrÞ−ω�þc2ðrÞ½ReVðrÞ−ω�2 � � � :

Its position and width correspond to the values of the real
and imaginary part, respectively, which can be obtained
from a fit to the reconstructed spectra [i.e., with σ∞ and
ciðrÞ as parameters]. The practicability of this strategy has
been verified within HTL perturbation theory in Ref. [16]
and it was found that for the purpose of extracting the
potential the Wilson loop can possibly be replaced by other
observables such as the Wilson line correlators in Coulomb
gaugeW∥ðr; τÞ. One particular benefit of this observable is

the absence of cusp divergences and an improved signal-to-
noise ratio on the lattice.
Equipped with these technical and conceptual improve-

ments we proceed to extract the temperature dependence of
the static in-medium interquark potential in a purely
gluonic as well as for the first time in a full QCD medium.
We generated quenched QCD configurations, based on the
naive anisotropic Wilson action in a fixed scale approach,
i.e., temperature is changed between 210 MeVð0.78TcÞ ≤
T ≤ 839 MeV ð3.11TcÞ by modifying the number of
temporal lattice points (see Table I). Our choice of
β ¼ 7 corresponds to a relatively fine lattice spacing
of as ¼ 0.039 fm [4], which together with a spatial extend
of Ns ¼ 32 allows us to access both the Coulombic part of
the potential, as well as those distances at which it is
already screened at 3.11Tc. We use an anisotropy of
as=aτ ¼ 4, since for a reliable determination of ImV a
large number of points in temporal direction is required.
After fixing our configurations to the Coulomb gauge,

we measure the Wilson line correlators (see Table I for
number of measurements Nmeas). Note that even if the
gauge fixing condition is relaxed and we sample over
different gauge realizations, as proposed in Ref. [19], the
intermediate τ range of W∥ðr; τÞ, relevant for the potential,
appears to be simply multiplied by an irrelevant constant.
Only the overlap-divergence [20] induced part of the
curvature close to τ ¼ 0; β steepens. Correlators are
obtained along each spatial axis (Fig. 1, top), on the square
and cubic diagonals. Lattice spacing artifacts are partly
removed by correcting the spatial distances from a com-
parison of free lattice propagators with the continuum [21].
We perform the Bayesian reconstruction of the Wilson

line spectra at different temperatures excluding the first and
last correlator data point at τ ¼ 0; β to avoid overlap
divergences [20]. In order to not introduce a bias for the
functional form, we work with a flat default model
mðωÞ ¼ const. Frequencies are discretized at Nω ¼ 4000
along ωnum ∈ ½−168; 185� × Nτ=24 GeV with a Nhr ¼ 550
high resolution subinterval around the lowest lying peak.
This choice is large enough for the spectra to settle parallel
to the default model at large ω and we have checked that
further extending the ω range or the number of points does

TABLE I. Lattice QCD configurations. Top: quenched SU(3) on 323 × Nτ anisotropic ξb ¼ 3.5 lattices with as ¼ 0.039 fm and
Tc ≈ 271 MeV. Bottom: isotropic HotQCD 483 × 12 lattices with asqtad action (ml ¼ ms=20; Tc ≈ 174 MeV).

SU(3): Nτ 24 32 40 48 56 64 72 80 96

T [MeV] 839 629 503 419 360 315 280 252 210
Nmeas 3270 2030 1940 1110 1410 1520 860 1190 1800

QGP: β 6.8 6.9 7 7.125 7.25 7.3 7.48

T [MeV] 148 164 182 205 232 243 286
a [fm] 0.111 0.1 0.09 0.08 0.071 0.068 0.057
Nmeas 1295 1340 1015 1270 1220 1150 1130
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not change the outcome. A unique global solution is found
based on an LBFGS minimizer with 512 bit precision
arithmetic and a step size stopping criterion of Δ ¼ 10−60.
Several of the reconstructed spectra for Nτ ¼ 24 are shown
in Fig. 1.
In the top panel of Fig. 2 the results for the real part from

the position of the lowest lying spectral peak are given by
colored open symbols. They are contrasted to the color
singlet free energies in Coulomb gauge Fð1ÞðrÞ ¼
−T log½W∥ðr; τ ¼ βÞ�, obtained on the same lattices (filled
gray circles). Since the raw values fall on top of each other
at small distances we have shifted them for better read-
ability. The error bars shown are obtained from the jack-
knife variance resulting from repeating the reconstruction
ten times excluding a different set of 10% of the underlying
measurements each. The error bands (given for T ¼ 210;
360; 629; 839 MeV) on the other hand denote the maxi-
mum variance obtained from changing three different
quantities. One corresponds to a reduction of the number
of data points along τ by 4 and 8, the second to changing
the default model normalization (×10, ×0.1) or functional
form (m ∝ const;ω−2;ω2) and the third to the reduction in
signal-to-noise ratio by excluding 10%, 20%, or 30% of the
available measurements. Note that because the spectral
reconstruction takes into account all data points along τ, our
results for T ≲ Tc are much more robust than the free
energies, which rely on a single data point. On the other
hand the Bayesian reconstruction suffers from a diminish-
ing number of data points at increasing temperature, as seen
in the error bands.
Our main observation is that even though the τ ¼ β data

point is excluded from the reconstruction, the values of
Re½V� obtained at all temperatures lie close to the color
singlet free energies. While the lowest temperature shows
no or very weak deviation from a linearly rising potential,
the values above T > Tc show clear signs of Debye
screening with increasing temperature. At r < 0.15 fm
we find little temperature dependence, as expected.

The extraction of the imaginary part from Bayesian
spectra poses an even more formidable challenge than
Re½V�. Its presence can be qualitatively inferred already
from the Euclidean correlator (see Fig. 1, top panel),
where at intermediate τ values a deviation from the
exponential decay and a finite curvature emerges. For
accurate quantitative results, the reconstruction of the
lowest lying peak needs to capture both the width and
the skewness of the Lorentzian related to nonpotential
effects.
The novel Bayesian approach for the first time allows us

to extract this functional form (see Fig. 1, bottom panel),
where the MEM yielded Gaussian-like features. Previous
tests based on mock data from momentum regularized
HTL perturbation theory show that to obtain values
accurate to ∼25%, data sets with Nτ ∼Oð100Þ data points
are required at a high precision of ΔD=D < 10−4. If fewer
points are available the reconstruction tends to under-
estimate the width, while statistical noise leads to broad-
ening. The former effect dominates at high temperatures

FIG. 1 (color online). Spectral reconstruction: on-axis Wilson
line correlator data (top) at Nτ ¼ 24 and (bottom) the spectral
functions obtained by the new Bayesian reconstruction method.

FIG. 2 (color online). Gluonic medium. Top: the shifted real
part of the static interquark potential (open symbols) compared to
the color singlet free energies (gray circles). Error bars represent
statistical uncertainty; error bands include also systematics (see
main text). Bottom: Im½V� (symbols) shifted and compared to the
HTL predictions (solid lines).
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and at small separation distances (r < 0.25 fm), where the
lattice data carry small relative errors. At larger distances
the exponential suppression of the Euclidean correlator
leads to an artificially broad width.
Bearing these systematic effects in mind, we estimate

(see the lower panel of Fig. 2) that Im½V� lies in a band
compatible with the expectations from HTL perturbation
theory at high temperatures at least along the initial rise
up to r < 0.4 fm. Beyond this distance the reconstructed
width increases artificially due to loss of signal in the
correlator. For T ≲ Tc the values of Im½V� on the other
hand appear to lie slightly below HTL for all available r.
This first principles result is consistent with findings by a
recent modeling study, based on HTL spectra [22].
Next, we consider the realistic setting of a thermal QCD

medium containing both gluons, as well as the light u; d,
and s quarks. The corresponding full QCD 483 × 12 lattices
were generated by the HotQCD Collaboration [23] for
the study of the QCD phase structure (see Table I).
The Bayesian reconstructions with a common βnum ¼ 20
are performed using Nω ¼ 4600 steps in a numerical
interval of fixed length ω ∈ ½−11; 12� and a high resolution
interval of Nhr ¼ 1000 points to capture the lowest lying
peak. Because of the high cost in generating the configu-
rations it is currently not possible to obtain similarly large
temporal extends as in quenched QCD, even with the use of
supercomputers. Therefore, we focus in Fig. 3 solely on the
values of the real part (colored symbols) of the potential,
which are compared to the color singlet free energies (gray
circles) from the same lattices. Error bars are again obtained
from jackknife variance. The error bands (given for
T ¼ 148; 232; 286 MeV) result from the maximum varia-
tion among changing the number of data points along τ by 1
and 2, changing the normalization and functional form of
the default model, as well as from removing 10%, 20%, or
30% of the statistics.

At temperatures below and slightly above the pseudoc-
ritical temperature Tc ≈ 174 MeV on our lattices, the
Bayesian reconstruction allows us to reliably determine
Re½V� up to physical distances of r ¼ 1 fm. The signal of
the free energies at similar T is quickly lost in the much
larger statistical noise. We do not observe string breaking,
up to r < 1.2 fm, most probably due to the lattice pion
mass MRMS

π ∼ 300 MeV still lying above the physical
value. The presence of fermionic DOF significantly
changes the character and location of the phase transition.
While Debye screening is already pronounced at T ¼
286 MeV, we do not find a qualitative difference in the
gradual weakening of Re½V� compared to the quenched
case. Figure 3 furthermore tells us that also in full QCD the
real part lies close to the singlet free energy.
We have measured the static in-medium interquark

potential, defined from first principles, in lattice QCD
simulations at phenomenologically relevant temperatures
around the deconfinement transition. The real part of the
complex potential is found to lie close to the color singlet
free energies in Coulomb gauge and displays the expected
Debye screened behavior above the phase transition.
Consequently, it disagrees with the internal energies,
another observable deployed as a model potential in the
literature. It would be hence interesting to use this first
principles potential as input to heavy quarkonium spectral
function and phenomenological studies [24]. Our estimate
of Im½V� in the quenched case above Tc shows reasonable
agreement with HTL for r < 0.4 fm, where spectral widths
can be determined reliably. For T < Tc it is systematically
smaller, which is expected due to Boltzmann suppression
of pion and glue ball densities there.
A continuum extrapolation should be pursued in the

future, although some conceptual hurdles exist. It is long
known that the Wilson loop does not possess a continuum
limit, due to cusp divergences [25]. The Wilson line
correlator contains end-point divergences, which acciden-
tally vanish in the Coulomb gauge up to two loops [26] but
their nonperturbative behavior towards a → 0 is unknown.
As on the lattice W∥ðτ; r ¼ 0Þ ¼ 1, raising the UV cutoff
translates into stronger suppression at intermediate τ.
In practice, this requires adequately increased statistics
to maintain a reliable spectral reconstruction.
A more accurate reconstruction of Im½V� calls for lattices

of significantly higher temporal resolution, which is cur-
rently challenging for quenched and impractical for full
QCD. A concerted effort towards the tuning of realistic
dynamical QCD lattices with anisotropy would thus be
greatly beneficial to this field of research.
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FIG. 3 (color online). Quark-gluon plasma: the real part of the
static interquark potential (open symbols) compared to the color
singlet free energies in Coulomb gauge (gray circles).
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