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We derive the gravitonic Casimir effect with nonidealized boundary conditions. This allows the
quantification of the gravitonic contribution to the Casimir effect from real bodies. We quantify the
meagerness of the gravitonic Casimir effect in ordinary matter. We also quantify the enhanced effect
produced by the speculated Heisenberg-Couloumb (HC) effect in superconductors, thereby providing a test
for the validity of the HC theory, and, consequently, the existence of gravitons.
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One of the most remarkable consequences of the nonzero
vacuum energy predicted by quantum field theory is the
Casimir effect. In its most basic form, the Casimir effectis the
attraction between two perfectly reflecting surfaces as a
result of the restriction of allowed modes in the vacuum
between them (Fig. 1). Real bodies, however, are not
perfectly reflecting, and the generalization of these ideal
boundary conditions to more realistic ones has been derived
for the electromagnetic (EM) field, resulting in the Lifshitz
formula at zero temperature [1]. The EM field, of course, is
not the only field that produces the Casimir effect; in theory
all fields of the quantum vacuum contribute to the Casimir
effect. In fact, the contribution to the Casimir effect from any
massless field which is opaque to the plates should be
significant (mass quickly weakens the Casimir effect [2]).
Therefore one may imagine plates which are opaque to the
gravitational field, so that the Casimir effect would then be a
manifestation of the quantization of the gravitational field, or
gravitons. The difficulty is in finding such a medium, as
ordinarily materials are transparent to the gravitational
field [3].

Recently, however, there have been suggestions that the
properties of quantum fluids (superconductors, superfluids,
quantum Hall fluids, Bose-Einstein condensates) may
enhance the interaction with gravitational waves (GW).
The novel effects of the interaction of a gravitational field
with a quantum fluid were first investigated by DeWitt [4]
and Papini [5], who calculated that a Lense-Thirring field
should induce a current in the superconductor. Following
this, further analyses were made into the interaction of GW
with superconductors [6,7], proposing superfluids as a
medium for gravitational antennas [8], superconducting
circuits as GW detectors [9], transducers [ 10,1 1], and mirrors
[12]. These ideas have not been met without controversy
[13,14]. Although a few experiments have attempted to test
the proposed enhanced GW interaction [15,16], none have
produced clear and unambiguous outcomes. This is perhaps
because of the small magnitude of some of the theorized
effects coupled with the practical challenges in producing the
environment capable of their detection [16]. In light of the
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controversial status of enhanced gravitational interaction, an
understanding of the gravitonic Casimir effect for realistic
bodies is needed to accurately quantify the contribution in
ordinary materials and in any theorized system with
enhanced gravitational interactions.

The Casimir effect has also been investigated in weak
gravitational fields to see the effect the slightly curved
spacetime background would have on the Casimir energy
[17]. In these works, the gravitational field is assumed to be
unaffected by the matter that forms the boundary con-
ditions. This is different from what we are considering here,
where we look at how the gravitational field of the vacuum
interacts with the matter of the boundary conditions to
give rise to the gravitonic Casimir effect, in flat spacetime.
This gravitonic Casimir effect has been considered in a
cosmological context; however, in these works, the boun-
dary conditions are idealized and not suitable for realistic

FIG. 1 (color online). The Casimir effect with a two plate setup.
The change in the refractive index of the plates causes the
gravitational wave to refract. k represents the wave vector of the
incident, transmitted, and reflected gravitational waves, and y is
the corresponding angle with respect to the surface normal.
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terrestrial systems [18]. The gravitonic Casimir potential
also has been calculated for a massive test point particle
interacting with a fluctuating mass distribution [19]. In this
Letter we derive the gravitonic Casimir effect for real bodies.
In effect we give the Lifshitz formula for the gravitonic
contribution to the Casimir effect at zero temperature.
The contribution of small perturbations to the flat
spacetime metric 7, is well described by the linearized
Einstein field equations. We begin with a Maxwell-like
formulation of the linearized Einstein field equations
known as gravitoelectromagnetism (GEM) [20,21],

V-E =p?, (1)
V-B=xp™, (2)
OB
VXE=-"+-
X o kJM (3)
OE
S ()
VxB =24k, (4)

where k = 87G/c*. In this formulation, components of
the Weyl tensor (C,p,,) play roles analogous to the electric
and magnetic fields in electromagnetism: E;; = Cy,p; and
B;j = xCy;;, (x denotes Hodge dualization [22]). The rhs
of the GEM equations contains components of the matter

current, J,,, = =T, + 3,7, Wwhere Tﬂ(,, )(T =T))
E

are the stresses due to the perturbation: pi ==Jio

pg ) = = —xJ00, J( ) = = Jjo» and J = *J;0; (we use the
convention that Greek letters go from 0 to 3 and Roman
letters go from 1 to 3, unless otherwise stated).

We are interested in the macroscopic properties of the
system, so E, B, T will represent Russakoff spatial aver-
aged values [23], as is used in the macroscopic Maxwell’s
equations. We assume that 7;; = y(w)E;;, where y(w) is
the frequency dependent gravrtatlonal susceptibility [24];
we will later show a specific model of matter where the
induced stresses are of this form. We consider the grav-
itoelectromagnetic fields to be of plane wave form,
Eij(r, t) = gijei(k-l‘—a)f)’ Bl'j(r, t) = Bl_jei(kl‘—wt). From the
GEM equations, E and B are transverse waves with two
independent polarizations, “4” and “x”, respectively
defined by the only nonvanishing components &;; =
—Ep =By =08y =a and -B;=By)=E,=E,=p,
in the proper frame of the plane wave. Here we define
the proper frame of the plane wave as that in which k is
along the positive z axis.

The vacuum energy of any quantum field between
parallel plates (separated by distance @) is a summation
of the energy of all allowed modes of the field. The opaque
boundary of the parallel plates in the xy plane means that the
k, components of the field are discrete, whereas the k| =
(kx,ky) components remain continuous. In terms of the
graviton eigenfrequencies, the vacuum energy of gravitons
between the plates at zero temperature is given by [25]

fl

where o is the surface area of the plate. The allowed modes
(w;}, ) between the plates are found by considering the
boundary conditions, as follows.

A naive application of Stokes’ theorem to the E and B
fields at the plate interface will produce an overdetermined
problem. The reason for this is that the extra components of
these second-order tensors would introduce extra con-
straints, as compared to vector fields, such as the EM
field. Thus E and B cannot be considered completely
smooth across the interface. Instead only the traceless part
of the tangential components of the tensor fields are
considered smooth across the interface—this is known
as the smoothness principle [24]. This gives rise to the
boundary conditions

AL(1 4+ x7/2)ETT] =0 (©)

ABTT =0, (7)

where ET] = 1T ¢itkr=e1) i the traceless part of E after it
has been projected onto the interface, and B!l =

BITeitkr=e1) g the traceless part of B after it has been
prOJected onto the interface (subscripts a, b = 1,2). In the

interface frame as shown in Fig. (1), &7 —Eg =
a(l1=S%/2), ET=¢&T =pC, and BM =-BIT
—B(1=52/2), BIT =BT =aC, where S= siny =

ky/k and C=cosy = k. /k. AQ = Q, — Q, refers to the
change in quantity Q at the interface between medium 1
and medium 2.

We now adapt van Kampen et al.’s [26] contour integral
method, except with different boundary conditions, to get
the gravitonic Casimir energy. Applying the boundary
conditions of Egs. (6) and (7) at the two plate interfaces,
we get the following system of linear homogeneous
equations of variables a, o, o, & for the + polarization
(primes indicate the region of operation, as represented in
Fig. 1),

d(1+ky/2)(1 - S/2/2)e_q"’/2

= a(l —82/2)e™14% + o' (1 — 82 /2)et/2, (8)

(1 +x7/2)(1 - §/2)eoP
=a(l —82/2)e? + o' (1 — §2/2)e™44/2, (9)
o' Cle=14? = qCe99/2 — /! Ce99/?, (10)
—a"Cle™19/2 = qCe19/2 — o' Ce™99/2, (11)
where ¢°> = —k2 =kj—?/c* and ¢*=-k> = k-

(1 +Kky)w?*/c? A nontrivial solution exists when the
determinant of the corresponding matrix is zero,
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At = (1+xy/2)C(S* -2
2)]2ew} = 0.

(12)

e

e {[C($? - 2) -
(82 =2) + (1 +k/2)C(S” -

The boundary conditions also yield a similar set of linear
homogeneous equations of variables g,p, 5", ", from
which we get for the x polarization,

A = e {[(1 +Kx/2)C'(8* = 2) = C(S? = 2)Pe™4
—[(1+xx/2)C'($? =2) + C(§"* = 2)]Pe} = 0.
(13)

Solutions of Egs. (12) and (13) give the allowed modes
between the plates, i.e., the eigenfrequencies (w;, @)).
There will be an infinite number of these eigenfrequencies.
We can sum them in Eq. (5), using the argument principle
of complex analysis [27],

1 —ico
>0, = /.

where the closed contour of integration has been taken over
a semicircle C* of infinite radius in the right half of the
complex plane of @ with its center at the origin, and the
imaginary axis [ico, —ico], in a counterclockwise manner.

In the high frequency limit, the system does not have
time to respond to the rapid oscillations of the field, and
therefore will effectively act with time averaged behavior.
Analogous to the EM case, we thus make the natural
assumption  lim,,_, .y (®)=lim,_ dy(®)/do=0 and
therefore y = ¢/ in this limit; i.e., at very high frequencies
the plates are effectively transparent to the GW. With this
assumption, the second integral in Eq. (14) is independent
of a.

The summation over the infinite number of allowed
modes will of course give an infinite value for E. To get the
finite Casimir energy per unit area we take away the energy
at infinite separation. Employing the argument principle to
Eq. (5) and then integrating by parts, one arrives at the

a)dlnA+/ wdlnA}, (14)
Cct

gravitonic Casimir energy (£ = —iw),
Ey 2 -2
E(a):——hm—:— k”dk” ln l—l‘ e qa)
6 a-x 0
+In(1 = rke24%)]dE (15)
where
C’(S2 -2)-(1+ K;(/Z)C(S’2 -2)
ry =5 2 2 ’ (16)
C(S*=2)+ (1 +xy/2)C(S*=2)
1 2 1(Q2 _ 2) — 12 _ 2

(1+x¢/2)C'(S2=2)+C(S2=2)

The boundary conditions Egs. (6) and (7) at an interface
yield Egs. (8) and (10). Simultaneously solving Egs. (8)
and (10), one gets

a  —C(S?=2)+ (1 +xy/2)C(S*-2)

—= e, (18)

a C'(S?—=2)+ (1 +xy/2)C(S* - 2)
Comparison of Eq. (18) with Eq. (16) shows that
|r | =|a"/al, i.e r . is the magnitude of the gravitational
reflection coefficient of the + polarization. Similarly for
the x polarization, |r| = |#”/f| is the magnitude of the
gravitational reflection coefficient of the x polarization.
This tells us that Egs. (16) and (17) are the Fresnel reflection
coefficients for the two polarizations of the gravitational
wave. Therefore Eq. (15) has the same form as the Lifshitz
formula for the EM Casimir energy at zero temperature,
except the EM reflection coefficients have been replaced
with their gravitational equivalent. It is important to point
out that this was not a priori obvious, as our starting point
was the linearized Einstein equations, which is fundamen-
tally different from Maxwell’s equation of electromagnet-
ism, although GEM provides useful analogies between the
two theories. A marked difference is that the EM fields are
vectors, whereas E and B are tensor fields.

We need now to find an estimate for (). A number of
models of the interaction of GW with bulk matter exists.
For example, Refs. [21,28] considered a medium consisting
of molecules modeled as individual harmonic oscillators to
calculate the quadrupole moment induced by an incident
GW; Ref. [29] studied the interaction and dispersion of GW
in a hot gas. Here we use Peters’ [30] model who
considered the scattering of GW by the gravitational field
of individual free particles of a thin sheet of matter. Peters
derives a gravitational refractive index n which was much
larger than that generated by just considering the induced
quadrupole moments, suggesting that his model encapsu-
lates the dominant GW interaction with matter. Peters gives
the gravitational refractive index as

27Gp
=1 , 19
n=142 (19)

where p is the density of the medium.

Under the Lorentz gauge (h**,
—2«T,, (note hy,,
the relation E;; =
of the previously assumed form, 7;; =

=0), 90%04h,, =
is traceless). Using this, Eq. (19), and
—w*h; /2, result in gravitational stresses
x(®)E;; where

1 —n(w)?
x(0) = ———, (20)
KC
with the high frequency limits: lim,_y(®) =

lim,,_,dy(w)/do =0

Except for the lowest frequencies, for ordinary material
parameters, y < ¢*/G, and therefore the reflection coeffi-
cients and Casimir pressure [P(a)=—0E(a)/0a] are neg-
ligible. Specifically, if we take a typical O[p]=10*kg/m>
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and O[l] = 1 A, then P(107°) ~ 102! nPa. This value is, of
course, beyond detection. For the Casimir pressure to be
measurable, the density of the material would have to be at
the very least O[p] = O[c?/G] ~ 10>’ kg/m?. This material
density is clearly not achievable, at least terrestrially.

Up until now we have considered only materials with
classical properties. Recently, Minter et al. [12] proposed
that the quantum mechanical properties of superconducting
films can give rise to specular reflection of GW. Their claim
is that in an ordinary metal plate, the ions and normal
electrons locally co-move together along the same geodesics
in the presence of a GW. However, when the plate becomes
superconducting, the quantum-mechanical nonlocalizabil-
ity of the negatively charged Cooper pair undergoes non-
geodesic motion, whereas the positive charged ions of the
lattice remain on the geodesic path. Specifically, the authors
couple the gravitational field to the superconductor through
DeWitt’s minimal coupling scheme [4]. To first order, the
ground state of the delocalized Cooper pairs does not change
in the presence of a GW whose frequency is less than the
BCS gap frequency. In comparison, the shift in the momen-
tum of the localized ions is proportional to the gravitational
vector potential. Because the Cooper pairs and ions are
oppositely charged, a strong Coulomb force will resist this
separation of charge caused by the GW, resulting in its
reflection. The authors dub this the Heisenberg-Coulomb
effect. A similar effect had been proposed in Ref. [6].

The origins of the arguments employed by Minter
et al. are heuristical in nature, some of which we believe
require a much more formal approach to be convincing. This
is echoed in a review article [14] on theories of enhanced
gravitational interaction with quantum fluids, which pre-
dates Ref. [12]; in particular, the authors urge that a formal
derivation of the quantum mechanical coupling between
an electron and both the electromagnetic and gravitational
field is needed. Nevertheless, the work by Minter et al. does
yield results which can be used to falsify their theory.
The Heisenberg-Couloumb (HC) effect should enhance the
Casimir pressure between superconducting plates. Here we
quantify the size of this effect.

Minter et al. give the reflection coefficient of a super-
conducting film from an incident GW as

28 \~!

where ¢ is the EM skin depth of the superconducting film
and d the film thickness. In the thin superconducting film,
the current flows in the x-y plane; therefore only the normal
incident component of the GW will drive the current. At
normal incidence the magnitude of the reflection coefficient
of the two polarization modes is the same, as they only
differ by a rotation (this is also true for EM waves). We can
use Eq. (21) in Eq. (15) to calculate the gravitonic Casimir
pressure between two superconducting films.

We calculate the gravitonic contribution to Casimir
pressure for superconducting lead (Pb) of thickness

d =2 nm at zero temperature. The EM skin depth of Pb
is 0 =37 nm. We compare this with the photonic con-
tribution to the Casimir pressure of superconducting lead.
The EM reflection coefficient is [12]

2162 \ !
rp = (1 +W5> , (22)

where 1 = 83 nm is the coherence length. The photonic
contribution to the Casimir pressure is calculated by using
Eq. (22) in the EM Lifshitz formula [1], which has the same
form as Eq. (15).

Equations (22) and (21) are most valid when the driving
frequency is less than the BCS gap frequency, as for higher
frequencies the dissipative component of the complex
conductivities would need to be taken into account.
However, as higher frequency modes contribute exponen-
tially less to the Casimir energy, one may still use the
simple reflection coefficients derived by Minter et al. to
obtain the first-order estimate of the Casimir pressure for
superconductors at zero temperature. Figure 2 compares the
gravitonic to photonic contribution of the Casimir pressure
as a function of separation of plates of superconducting Pb.
It shows that gravitons can have a significant contribution
to the Casimir pressure, via the HC effect. In fact, for the
superconducting Pb film considered here, the gravitons will
dominate the Casimir pressure by an order of magnitude
over photons.

The magnitude of the Casimir pressure and plate sepa-
ration distance that we are talking about here, is comparable
in size to what has already been achieved in current
experiments [31,32]. Few experiments, however, have been
conducted at low temperatures [33], as room temperature
setups are a more experimentally accessible environment.
Of these low temperature investigations, only the ALADIN
project has experimented with superconducting aluminum
(Al) film, separated by a thin oxide layer from a thick gold
plate, to observe how the Casimir energy influences the
superconducting phase transition (preliminary experimental

P [nPa]
=)

photonic

alpm]

FIG. 2 (color online). Gravitonic (dotted line) and photonic
(solid line) contributions to the Casimir pressure of parallel plates
of superconducting Pb at zero temperature, as a function of plate
separation a. Because of the Heisenberg-Coulomb effect, the
gravitonic contribution exceeds the photonic.
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results are reported in [34]). One could imagine modifying
such an experiment to test for the gravitonic contribution to
the Casimir effect as described in this Letter.

We have derived here a Lifshitz-type formula for the
gravitonic Casimir effect for real bodies. Besides complet-
ing a theoretical gap in our understanding of the Casimir
effect, this formula is important in light of recent models
of enhanced gravitational interaction, as it allows us to
quantify the gravitonic contribution to the Casimir effect
predicted by these theories. If measurements of the Casimir
pressure of the setup described in this Letter match only to a
photonic contribution [Fig. (2), solid line], then one should
conclude that the HC effect is invalid, if we are to hold on to
the idea of the graviton. However, if experiments show the
Casimir pressure to be an order of magnitude larger than
that predicted from the photonic contribution alone, this
would be the first experimental evidence for the validity of
the HC theory and the existence of gravitons. This would
open a new field in the way of graviton detection.
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