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We compute the length and time scales associated with resonant orbits around Kerr black holes for all
orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon
Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record
phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole,
or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for
non-Kerr spacetimes should occur at the resonance locations quantified here.
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Introduction.—Resonant phenomena are ubiquitous in
multifrequency systems and are harbingers of the onset of
dynamical chaos [1]. In celestial mechanics, they play an
important role in satellite dynamics. Gaps in the asteroid belt
and the density profile in the rings of Saturn [2,3] have in
large part been sculpted by resonant interactions. The orbital
motion of satellites around black holes is mathematically
idealized as bound geodesics in the Kerr metric. Unlike in
Newtonian gravity, where orbits are characterized by a
single rotational frequency ωϕ, Kerr geodesics have three
frequencies [4]. The two libration-type frequencies ωr and
ωθ, corresponding to the radial and longitudinal motions,
augment ωϕ and give rise to the resonant phenomena
considered here.
When exploring dynamics in an astrophysical environ-

ment such as near Sgr A* at the Galactic center a number
of corrections to the vacuum Kerr Hamiltonian must be
taken into account. The presence of an accretion disk [5],
other sources of matter, structural deviations of the
central black hole away from the Kerr metric [6–8], the
influence of modified gravity, and the satellite’s properties
like mass and spin [9,10] will all affect its orbital motion.
Regardless of the nature of the perturbation, the
Kolmogorov-Arnold-Moser (KAM) theorem states that
the perturbed dynamics will be a smooth distortion of Kerr
geodesics provided the frequencies of the motion in HK
are sufficiently irrational as quantified by the criterion
[11,12] jmωr − nωθj > KðϵÞ=ðnþmÞ3. The factor KðϵÞ
here approaches zero as the perturbation vanishes. The
notable exception to this theorem is low-order (small
nþm value) resonant orbits whose frequencies occur in
the rational ratios of ωr=ωθ ¼ n=m ¼ 1=2; 1=3; 2=3;….
For these orbits the possibility of dramatic deviations from
Kerr dynamics exists. Since the predictions of the KAM

theorem depend on HK only, we expect a potentially
measurable imprint of Kerr’s resonant structure in any
astrophysical environment. The locations of low-order
resonances are illustrated in Fig. 1 and the associated time
and length scales are tabulated in Table I. For Sgr A*, the
low-order resonances have ∼1 hr time scales and occur
∼50 μas from the black hole.
Within the next decade radio telescopes will attain

sufficient angular resolution to resolve length scales typical
of resonant phenomena at the center of our Galaxy [13].
A stellar-mass compact object samples all the resonant

FIG. 1 (color online). Low-order resonances superimposed on
the spatial geometry of a black hole. The linewidths indicate the
relative importance of each resonance.
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bands depicted in Fig. 1 as it spirals into a supermassive
black hole. Future gravitational wave detectors may
observe resonance-induced phase shifts in the emitted
gravitational waves [14,15]. X-ray, optical, and infrared
telescopes do not have the resolving power to image Sgr A*
directly but can potentially record flux variations from this
region that display time scales characteristic of resonant
events [16]. Quasiperiodic oscillations (QPOs) observed
in the x-ray spectra of several black hole candidates
exhibit peaks at frequencies in a low integer ratio that
could potentially be associated with the orbital resonances
[17,18]. To aid in the identification of astrophysical
phenomena that might originate from orbital resonances
we fully characterize the region of parameter space where
resonant effects occur. We present a number of easily
evaluated formulas demonstrating the spin and eccentricity
dependence of resonances and build an intuitive under-
standing for the inclination dependence.
The resonance condition.—Geodesic motion in the

Kerr spacetime with spin parameter a is integrable. The
energy E, azimuthal angular momentum Lz, and Carter
constant Q fully specify the trajectory of a particle with
rest mass μ [19]. The trajectory can equivalently be
described using Kepler-type variables that are directly
related to the orbit’s geometry [4]: its semilatus rectum p,
eccentricity e, and the sine of the maximum orbital
inclination z−. For a generic bound orbit expressed in
Boyer-Lindquist coordinates ðt; r; θ;ϕÞ, the radial motion
oscillates between the apastron, r1 ¼ p=ð1 − eÞ, and
the periastron, r2 ¼ p=ð1þ eÞ, with a frequency ωr.
The longitudinal motion oscillates about the equatorial
plane with a frequency ωθ, sampling the angles
θ� ≤ θ ≤ π − θ�; we define z− ¼ sinðπ=2 − θ�Þ.
Resonances occur for parameter values on a two-

dimensional surface in fp; e; z−g space determined by
the resonance condition

n
m

¼ ωr

ωθ
¼

�Z
z−

−z−

dzffiffiffiffiffiffiffiffiffiffi
ΘðzÞp

���Z
r1

r2

drffiffiffiffiffiffiffiffiffi
RðrÞp

�
; ð1Þ

where the functions R and Θ can be factored as

R ¼ −β2ðr − r1Þðr − r2Þðr − r3Þðr − r4Þ; ð2Þ

Θ ¼ a2β2ðz2 − z2−Þðz2 − z2þÞ: ð3Þ

Here, β2 ¼ ðμ2 − E2Þ and the roots obey r1 ≥ r2 ≥ r3 ≥ r4
and zþ ≥ z−. Evaluating the right-hand side of Eq. (1) and
extracting the physics of the resonant surfaces is compli-
cated by the fact that the roots r3; r4, and zþ are implicit
functions of fp; e; z−g. By expressing the resonance
condition (1) in its most symmetric form using Carlson’s
integrals [20] we obtain several useful analytic results and
construct a rapidly convergent semianalytical scheme for
finding these surfaces in general [21].
Features of resonance surfaces.—The 2=3 resonance

surface in fp; e; z−g space for a maximally spinning black
hole is illustrated in Fig. 2. For a given spin, all resonance
surfaces display the same qualitative eccentricity and
inclination dependence. The surface has the shape of an
inverted U arch that depends weakly on eccentricity and
attains the maximum inclination of z2− ¼ 1 at p ¼ ppolar. For
smaller inclination, z2− < 1, and fixed eccentricity, the two
possible values of p on the resonant surface correspond
to prograde, pþ < ppolar, and retrograde, p− > ppolar,
resonant orbits. The p� subscript identifies sgnðaLzÞ ¼ �1.
As z− decreases the distance ðp− − pþÞ monotonically
increases to its maximum value on the equatorial plane.
The weak dependence of a resonance’s basic features on

eccentricity motivates studying its characteristics at fixed e
as a function of a and fp; z−g, as shown in Fig. 3 for the
2=3 resonance with e ¼ 0.5. We see that the arch width
exhibits a strong spin dependence, its inverted U profile

TABLE I. Time and length scales associated with low-order
resonances, n=m ratio. The values are for the e ¼ a ¼ z− ¼ 0
vertices seen in Fig. 4, both in dimensionless and physical units
forMSgrA�∼4.3×106M⊙. Here p�¼6=½1−ðn=mÞ2�, T¼2πp�3=2,
and ISCO refers to the Innermost Stable Circular Orbit.

Ratio Location Period T Galactic center Sgr A*
n=m p� ½GM=c2� ½GM=c3� p� [μas] T [min] f [10−4 Hz]

ISCO 6 92.3 30.6 32.7 5.10
1=2 8 142.1 40.9 50.3 3.31
1=3 6.8 110.2 34.5 39.0 4.27
2=3 10.8 223.0 55.2 78.9 2.11
1=4 6.4 101.7 32.7 36.0 4.63
3=4 13.7 319.1 70.1 112.9 1.48
1=5 6.3 98.2 31.9 34.7 4.80
2=5 7.1 119.9 36.5 42.4 3.93
3=5 9.4 180.4 47.9 63.8 2.61
4=5 16.7 427.5 85.1 151.3 1.10

FIG. 2 (color online). The location of the 2=3 resonance in
fp; e; z−g parameter space. The arch shape, typical for all
resonances at fixed spin, depends weakly on eccentricity. A
maximum value of z2− ¼ 1 is reached at p ¼ ppolar ∼ p� ¼ 10.8.
For a given e, the maximum (retrograde, right) and minimum
(prograde, left) values of p occur on the equatorial plane z− ¼ 0.
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pinching off to a single column I profile at p ¼ ppolar when
a → 0. The resonances become independent of inclination
since ωθ degenerates to ωϕ. As the spin increases the ope-
ning angle of the arch increases to amaximumarchwidth for
a ¼ 1. The result is aV-shaped footprint in the fp; ag plane.
As inclination increases, the prograde and retrograde
branches of the arch approach ppolar and the V narrows
from its largest opening angle for z− ¼ 0 to a line for z− ¼ 1.
For nearly circular equatorial orbits we obtain an exact

analytic solution for the V profile [21], which allows us to
benchmark the resonance locations for any spin because
of the U profile’s weak eccentricity dependence. When
e ¼ z− ¼ 0, Eq. (1) is equivalent to [21]

½pðp − p�Þ − a2ðp� − 3Þ�2 − 4a2pðp� − 2Þ2 ¼ 0 ð4Þ
where p� specifies the resonance via

p� ¼ 6=½1 − ðn=mÞ2�: ð5Þ
For nonspinning black holes, p ¼ p� is a solution to Eq. (4)
and determines the position of the I column in the U − I
transition in the circular limit. The value of p� sets the
general mean radius in physical space about which all the
interesting features associated with the n=m resonance
occur. Numerical values of p� for several low-order
resonances are given in Table I. For spinning black holes,
the largest two roots of Eq. (4) yield the V profile on the
equatorial plane (see Fig. 4). The maximum splitting of the
retrograde and prograde branches occurs when a ¼ 1 with
p� ¼ p� − 1∓2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p� − 2

p
from Eq. (4). For small spin, the

series expansion

p∓ ¼ p� � 2aðp�− 2Þffiffiffiffiffi
p�p −

a2ðp�2 −5p� þ 8Þ
p�2 þOða3Þ ð6Þ

is useful for making astrophysical estimates. The eccen-
tricity dependence of the U profile for a → 0 is

p
p� ¼ 1þ e2

4ðp� − 6Þ −
e4ð4p� − 17Þ
64ðp� − 6Þ3 þOðe6Þ: ð7Þ

Observe that as the resonant surfaces approach the inner-
most stable circular orbit (p ¼ 6) the effects of eccentricity
become increasingly important.
Astrophysical implications.—Long-term monitoring of

the time of arrival signals from a pulsar with orbital period
of a few months with the Square Kilometer Array could
determine the mass, spin, and quadrupole moment of Sgr
A* to a precision of≲10−2, providing a promising prospect
for a definitive test of the no-hair theorems [22]. A corollary
of the results in this Letter is that orbits with periods of the
order of months are sufficiently far from the low-order
resonances that the KAM theorem guarantees the region
to be effectively free of stochastic motion. Tracking the
trajectory of a pulsar in the region 50Rs < r < 1000Rs
should build up an accurate map of the central object’s
gravitational potential, and frequency drifts can be com-
puted perturbatively using averaging methods as in [23].
From Table I we observe that future gravitational wave

detectors sensitive to ∼10−4–10−1 Hz will directly probe
resonant dynamics, cf. also [24]. This is an exciting
possibility, but it underscores the necessity of carefully
modeling and incorporating resonant effects in the search
templates. If the central object is a non-Kerr black hole the
possible onset of geodesic chaos will occur first in these
regions and will complicate the analysis. Further numerical
investigation to quantify these effects for all E and Lz is
required.
Resonances can have either a capturing or a destabilizing

effect on particles that enter their region of influence [25].
The angular dependence of quadrupole perturbation will
preferentially excite the 2=3 resonance, which has been
shown in at least one exploration to have a capturing
effect [21,26].
For particles that are light enough, entering a resonance

zone can strongly modify the orbital evolution and even

FIG. 3 (color online). Spin dependence for the 2=3 resonance
with fixed e ¼ 0.5. The maximum arch width occurs at a ¼ 1.
As a → 0, the arch pinches off to a line at p ¼ ppolar.
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FIG. 4 (color online). The location of low-order resonances
(m ≤ 7) for e ¼ z− ¼ 0 as a function of a and p. For a ¼ 0 the
left-leaning prograde (blue) and right-leaning retrograde (copper)
branches are degenerate at p ¼ p�. Each vertex is labeled by
n=m, and darker colors indicate lower-order resonances.
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temporarily lock the frequencies in resonance. If a particle
becomes captured by a resonance its orbital parameters are
expected to change within the resonant surface, and for
generic conservative perturbations gravitational radiation
should cause the orbit to evolve to a lower energy state. In
Fig. 5 we show the orbital energy and azimuthal angular
momentum associated with the resonance surface depicted
in fp; e; z−g space in Fig. 2. The lowest orbital energy state
for the given resonance occurs in the lower right-hand
corner of Fig. 5, corresponding to prograde circular
equatorial orbits. The migration of resonantly captured
particles towards circular equatorial configurations could
result in a cohesive resonant structure that leaves an imprint
of density inhomogeneities on any thin disk surrounding a
black hole, similar to that imprinted on Saturn’s rings
[27,28]. Dissipation due to gravitational radiation dynami-
cally alters the resonance structures [29,30]. If a trapped
overdensity becomes sufficiently large for the radiation
reaction force to dominate over the resonance’s trapping
potential the ring will break, depositing material that may
accumulate on the next resonance band. Any radiation
emitted in the process is likely to be modulated with the
characteristic frequencies associated with the resonance
bands. The x-ray spectrum of a black hole candidate shows
QPOs at pairs of frequencies in a 3:5 ratio in addition to the
2∶3 ratio observed in other systems [17]. Observing a 3∶5
frequency ratio is unexpected; from a dynamical systems
perspective, the 3∶4 resonance should dominate. The
assumption that orbital resonances are a key ingredient
in explaining the QPO emission in this case provides an
explanation of the unusual occurrence of the 3=5 reso-
nance. In Table I and Fig. 4 we observe that the 3=5
resonance occurs just inside the 2=3 resonance for all spin

values and, consequently, matter from a disruption at the
2=3 resonance could collide with even a tenuous over-
density of matter at the 3=5 resonance location and
stimulate photon emission.
The results presented in this Letter may also provide a

robust method of determining the black hole’s spin given
observational evidence from more than one resonance.
Recent monitoring of Sgr A* with the 1.3-mm very long
baseline interferometry (VLBI) showed time-variable struc-
tures on scales ∼4Rs [16,31]. The physical origin of this
structure is not yet clear, but the length scale is similar to
that of the low-order resonances given in Table I. Suppose
now that the origin of the structure at ∼4RS ¼ 8M is due to
the 2=3 resonance that is displaced from its nonspinning
position, since on astrophysical grounds the 2=3 resonance
is likely to have the greatest probability of being directly
observable [21]. Using Eq. (6), the prograde spin displace-
ment is pþ ¼ 10.8–5.36a; thus, the observed structure
suggests Sgr A* has spin a ¼ 0.5. The plausibility of
identifying this structure with the 2=3 resonance could be
confirmed if characteristic time scales of slightly less than
one hour are associated with the variability and a 2∶3 ratio
in observed frequencies is discovered. Note that once the
spin is determined Eq. (6) predicts the location of the other
resonances. As the resolution of the VLBI measurements
increases, an observation of further resonances could
provide an independent check on the above spin determi-
nation, and, if the results are found to be consistent, a
vindication of the assumption that the observed effects are
of orbital origin.
Conclusion.—We have explored the basic properties of

resonant surfaces associated with radial and longitudinal
motion around a Kerr black hole and have provided a few
simple expressions to quantify resonant effects in astro-
physical systems. We have suggested a resonance-based
method for determining black hole spins in systems where
the orbital dynamics dominate over other physics.
Observations of QPOs, gravitational wave emission from
resonant transits, and radio maps of Sgr A* at event horizon
scales could in the near future provide a powerful obser-
vational toolkit for probing resonance phenomena.
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