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We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric
instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of
turbulence, with possibly observable consequences. This instability transfers from higher temporal and
azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade
displayed by (2þ 1)-dimensional fluids. Our finding provides evidence for the onset of transitory
turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high
spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity
duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
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Black holes are fascinating objects. They play a funda-
mental role in a plethora of energetic phenomena in our
Universe—for example, as the engines of active galactic
nuclei, x-ray binaries, and possibly even as regulators of
galactic structure. In addition, they have become central
tools in the study of field theories through the framework of
holography [1]. This includes attempts to understand
superfluidity, superconductivity, and quark-gluon plasmas
obtained in energetic collisions (see, e.g., Refs. [2–4]). One
particularly exciting connection inspired by holography is
the “fluid-gravity” duality, which indicates the dynamics of
black holes in asymptotically anti–de Sitter (AAdS) space-
times in (dþ 1) dimensions can be mapped to the physics
described by conformal fluids governed by viscous, rela-
tivistic hydrodynamics in d dimensions [5,6]. This opens
the door to search on one side of the duality for particular
behavior known to exist on the other. For instance, this
duality has motivated studies showing that particular
gravitational scenarios can become turbulent when their
fluid counterparts have high Reynolds numbers [7–9].
Additionally, concepts in hydrodynamics, such as ens-
trophy, have geometric counterparts related to curvature
quantities [7]. This duality can also shed light on poorly
understood phenomena from a new perspective. Analyzing
turbulence from an intrinsically gravitational point of view
is thus an exciting prospect.
In this Letter, we develop a method to do precisely this

and consider realistic, asymptotically flat black holes. Our
analysis describes how a parametric instability mimics the
properties of the onset of turbulence—which does not
require the “confining properties” of asymptotically AdS
spacetimes—and motivates the definition of a gravitational
Reynolds number. We first review general properties of
turbulent flows, salient features of the fluid-gravity duality,
and parametric instability.
Hydrodynamic turbulence.—Turbulence is a ubiquitous

property of fluid flows with sufficiently high Reynolds

number (Re≡ ρ=ηvλ ≫ 1) [10,11]. Here v and λ refer to the
typical velocity and wavelength of characteristic modes of
the solution, and ρ, η the fluid density and viscosity. At high
Re, nonlinear interactions prevail over dissipation due to
viscosity, and chaotic behavior ensues. Turbulence displays
several features: (i) an cascade (which can be toward higher
frequencies in 3-spatial dimensions or lower ones in
2-spatial dimensions), (ii) an exponential growth—possibly
transitory—of additional modes in the solution, and (iii) a
breaking of initial symmetries of the flow, which are only
recovered in a statistical sense at later times. Furthermore, in
the absence of a driving force, global norms of the solution
display a transient power-law decay, and viscous losses then
decrease Re until turbulence ends. Beyond these broad
aspects, a full understanding of turbulence is missing. A
promising new road of study has been furnished through the
fluid-gravity duality, provided a purely gravitational model
for turbulence is available. Here we present a step toward
understanding the onset of gravitational turbulence and
uncover possible astrophysical consequences.
Fluid-gravity duality and black holes in AAdS vs asymp-

totically flat spacetimes.—The fluid-gravity duality indicates
that long-wavelength perturbations of black holes in AAdS
spacetimes can be described by relativistic hydrodynamic
equations (with an equationof stategivenbyp ¼ ρ=d) [6]. In
addition to connecting known hydrodynamic and gravita-
tional effects, such as loss of energy through the black hole
horizon to viscous dissipation, the duality can reveal new
phenomena. The presence of turbulence in hydrodynamics
indicates that a similar behavior appears in perturbed AAdS
black holes, and this expectation has been confirmed by
simulations of the gravitational side of the problem [8] which
are direct counterparts of those in the hydrodynamical front
[7,9]. Nevertheless, an analytical understanding of what
mediates turbulence in gravity is an open question, as well
as whether such striking behavior can take place in the
realistic case of asymptotically flat (AF) spacetimes.
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In considering these questions, we recall the differences
in how these two classes of spacetimes relate to hydro-
dynamics. Regardless of the class considered, a gradient
expansion of the Einstein equations for long-wavelength
perturbations of black holes gives rise to relativistic hydro-
dynamic equations on a timelike hypersurface [12,13].
However, only AAdS has a unique surface, lying at infinity,
where the correspondence can be defined unambiguously.
In both classes, perturbed black holes have a spectrum of
free, damped oscillation modes known as quasinormal
modes (QNMs; see, e.g., Refs. [14,15]). Black holes in
AAdS only lose energy through the event horizon (as its
boundary acts as a confining box), while energy in AF
spacetimes can also be lost to infinity. Consequently,
QNMs decay considerably more slowly in the AAdS case.
From the hydrodynamic view, a slow decay of QNMs
implies low viscosity and a possibly higher Reynolds
number [9]. This motivates us to study interactions between
QNMs in rapidly spinning black holes—which have a
slowly decaying family of such modes—and, in particular,
how the signature of turbulence might arise in the AF case.
By doing so, we provide a gravitational description of the
onset of turbulence in realistic black hole spacetimes.
Damped parametric oscillator.—The parametric insta-

bility in black holes described below is analogous to the
simple parametric oscillator. A parametrically driven oscil-
lator can be described by the equation

q̈þ γ _qþ ω2½1þ 2fðtÞ�q ¼ 0; ð1Þ
where ω is the intrinsic harmonic frequency, γ is a weak
damping coefficient (γ ≪ ω), and fðtÞ characterizes the
parametric driving. The solution to this equation is bounded
in time, except when fðtÞ oscillates at approximately twice
the intrinsic frequency: fðtÞ ¼ f0 cosω0t, ω0 ≈ 2ω. In this
case the time dependence of the solution is described by eΩt,
with the rate 2Ω ≈ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 − ω−4½ω2 − ðω0=2Þ2�2

p
− γ. When

ω0 is close to 2ω, a small parametric driving amplitude f0
will be able to excite a growing solution, which is referred to
as a parametric instability. For a given value of the damping
coefficient γ, there is a critical relation that f0 and ω satisfy
at the separatrix between growth or decay. This is related to
the critical gravitational Reynolds number for the onset of
turbulent behavior in perturbed black holes.
Perturbed black holes in AF scenarios and turbulence.—

In four dimensions, a stationary AF black hole is
characterized by its mass M and spin parameter a, which
has a maximum value of a=M ¼ 1. When a=M ≈ 1 or
ϵ≡ 1 − a=M ≪ 1, there exists a family of quasinormal
modes with a small damping rate proportional to

ffiffiffi
ϵ

p
(referred as zero-damping modes or ZDMs) [16–19].
These modes have time dependence eiωlmnt, with

ωlmn ≡ ωR − iωI ≈
m
2
−
δ

ffiffiffi
ϵ

p
ffiffiffi
2

p − i

�
nþ 1

2

� ffiffiffi
ϵ

p
ffiffiffi
2

p ; ð2Þ

(with l, m, n denoting the angular, azimuthal, and
overtone numbers, respectively, and δ a function of l, m

and the spin-weight of the perturbation considered; see the
Supplemental Material [20]). Consider as an example a
black hole perturbed by a small mass falling toward the
event horizon. This excites some of the ZDMs to a
characteristic amplitude h0. Once a particular ZDM is
excited, at linear order its amplitude decays exponentially
with a rate ∝

ffiffiffi
ϵ

p
(in hydrodynamical terms, this decay

corresponds to laminar flow). However, nonlinear coupling
between modes introduces a competing transfer between
modes at a rate dependent on h0. As we decrease ϵ, the
mode-mode coupling mechanism may overcome decay,
even pumping up modes that are not initially excited,
regardless of how weak the initial perturbation is. This is
analogous to the onset of turbulence at high Re.
Formalism.—Aswegobeyond linear perturbation theory,

the spacetime metric g can be expanded as g ¼ gBþ
hð1Þ þ hð2Þ þ � � �, where gB is the background Kerr metric
and hðnÞ is the nth order perturbation. We are interested in
how an initial ZDM metric perturbation hð1Þ might trigger
other modes through parametric resonance. One way to
analyze the problem is to take g ~B ¼ gB þ hð1Þ as a dynamical
background metric and study the evolution of hð2Þ on it. To
avoid delicate gauge issues for the higher order metric
perturbations, we adopt a simpler version of this approach,
solving the evolution of a massless scalar field in the
dynamical backgroundg ~B. This field obeys thewave equation

□ ~BΦ ¼ 0; ð3Þ
and we bear in mind that Φ plays a role analogous to hð2Þ.
Since □ ~BΦ is gauge invariant, our results concerning the
parametric instability are gauge invariant.
The first-order perturbation hð1Þ corresponding to a

quasinormal mode with index (l, m, n) is

hð1Þμν ¼ 2h0ℜ½Zμνðr; θÞe−iωtþimϕ�; ð4Þ
where h0ðtÞ ¼ h0e−ωI t. As we perturb the background
metric gB to gB þ hð1Þ, Φ obeys

□ ~BΦ ≈
�
□B þ 1

Σ
Hðhð1ÞÞ

�
Φ: ð5Þ

Here Σ≡ r2 þ a2cos2θ and Hð:Þ is a time-dependent
operator linear in its argument. The time dependence of
H is crucial in triggering the parametric instability, which
occurs when the temporal and azimuthal frequencies of
the parent hð1Þ match the daughter mode Φ. For rapidly
spinning Kerr black holes, this occurs when the daughter
mode satisfies m0 ¼ m=2, as Eq. (2) guarantees that ω0

R ≈
ωR=2 as well. We make the ansatz

Φl0m0n0 ðxμÞ ¼ ½gjðtÞeð−1ÞjiωR=2t−ð−1Þjim0ϕYl0m0n0 �e−ω0
I t;

(summing over j ¼ 1, 2), with g1, g2 characterizing the
time dependence and Yl0m0n0 ðr; θÞ the perturbed wave
function. The equations of motion determining g1, g2 are
closely related to the parametric instability previously
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discussed. The solution to these equations is given by

gj ¼ Aje
R

αðt0Þdt0 with

α ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHh0ðtÞ=Qm0j2 − ðω0

R − ωR=2Þ2
q

; ð6Þ
where H has the physical meaning of mode-mode coupling
strength andQ gives the susceptibility of the wave equation
to a perturbation of the mode frequency [20]. At leading
order, Q is independent of m. An exponential growth in Φ
will occur if Ω≡ αðtÞ − ω0

I > 0, i.e., when

h0ðtÞ=ðm0ω0
IÞ − jQ=Hj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0

R − ωR=2Þ2=ω02
I þ 1

q
> 0: ð7Þ

We emphasize that given m0 ¼ m=2, both ω0
R − ωR=2 and

ω0
I can be read off from Eq. (2), and both are ∝

ffiffiffi
ϵ

p
. We

choose to normalize the radial wave function of the ZDMs
such that jH=Qj is ϵ independent—in other words, the effect
of mode-mode coupling stays constant for varying black
hole spins [38]. These properties are useful in defining and
interpreting the gravitational Reynolds number.
Turbulent black holes.—Based on the above analysis,

consider an initial ZDMmodewithm ¼ 2m0 and amplitude
h0; as we increase h0, all the secondary ZDMs with
azimuthal quantum number m0 satisfying Eq. (7) are
parametrically excited. As these daughter modes grow,
energy flows from the parent mode to the daughter modes,
and the parent mode experiences back reaction due to the
mode coupling. Ignoring this backreaction, these secondary
modes grow as long as Eq. (7) holds, but in a realistic
situation, parametric growth terminates when the ampli-
tudes of the parent mode and the secondary modes become
comparable requiring a fully nonlinear treatment (or
numerical study, e.g., Ref. [39]). The gravitational para-
metric instability displays an inverse cascade, as flows from
modes with high azimuthal frequencies to modes with
lower azimuthal frequencies, and from higher to lower
temporal frequencies. An initial azimuthal mode m gen-
erates a series of modes with azimuthal number m=2p after
p generations. This is similar to the inverse cascade in
(2þ 1)-dimensional turbulent fluids. Since modes with the
same m0 but high l can also be excited, there is also a direct
transfer of toward higher overall angular frequencies.
From the criteria in Eq. (7), we define a gravitational

Reynolds number Reg, taking m ¼ 2m0, and with ω0
I

chosen to be the lowest possible decay rate of all the
ZDMs, γη ¼

ffiffiffiffiffiffiffi
ϵ=8

p
. This gives

Reg ≡ h0=ðmγηÞ: ð8Þ
For a mode having Reg below some critical value given in
Eq. (7), no growth is expected, and the mode behaves in a
“laminar” manner, decaying normally. For larger values of
Reg, turbulent behavior ensues, driving growing modes and
a richer angular structure. Once Reg decreases below the
critical value for a given mode, that mode again decays
exponentially. Notice that the natural identifications among
hydrodynamical quantities {ratio of viscosity to density,
perturbation wavelength, and velocity} and gravitational
ones {lowest QNM decay rate, inverse of azimuthal
number of the perturbation, and amplitude of perturbation}
respectively as, fη=ρ ↔ γη; λ ↔ 1=m; v ↔ h0g gives
Reg ↔ Re. Our definition arises from the criteria for the
onset of instability, and it agrees with the one proposed in
Ref. [9] motivated through the fluid-gravity duality. Table I
presents a list of numerical values of the critical Reg,
beyond which the parametric instability for different driv-
ing and secondary modes will be turned on. We consider
only the lowest overtone modes, n ¼ n0 ¼ 0. We can see
that for fixed ϵ and m, the critical Reg asymptotes to a
constant value for high l modes. One may argue that this
means modes with arbitrarily high l are all excited.
However, as discussed in Yang et al. [18,19] there is a
minimum, critical ϵ, beyond which the required phase-
matching condition gradually fails to hold. A conservative
estimate for this critical value is ϵc ∝ l−2. So for a given
spin, there is a high angular frequency cutoff scale where
the instability criteria is not satisfied and the transfer stops.
Figure 1 illustrates the rich angular structure of the

perturbed spacetime that arises due to the parametric
instability, due to driving by the fundamental l ¼ 2,
m ¼ 2, n ¼ 0 QNM. We take for our fiducial example ϵ ¼
2 × 10−3 (a=M ¼ 0.998) [40] and h0ðt ¼ 0Þ ¼ ð1=8Þ ffiffiffi

ϵ
p

.
This amplitude is motivated by the expected excitation
following a large mass-ratio inspiral, such as can occur in
supermassive binary black hole coalescence following
galaxy mergers [20]. Note that for such an h0 the criteria
for growth is independent of spin, so long as ϵ ≪ 1. In the
fully gravitational case, we can expect a similar develop-
ment of structure in both the far-field radiation and

TABLE I. Critical Reg for different parent daughter modes with m ¼ 2m0. These numbers are obtained in the ingoing radiation gauge
using a value for jH=Qj evaluated at ϵ ¼ 10−5 (although they are expected to be ϵ independent, numerically we use a small ϵ to reduce
systematic error in the wave functions); extrapolation to lower spins and error in the matching of radial eigenfunctions are the dominant
sources of error, which we estimate conservatively to be 10%. The parent mode of the 42 → l1 driving has an imaginary value of δ,
whereas the parents in the other two cases have real δ, which may explain the large critical Reynolds numbers in those cases. Note also
that the 44 → 22 driving is unique in the sense that both its parent and daughter mode have real δ.

ðl; mÞ l0 ¼ 1 l0 ¼ 2 l0 ¼ 3 l0 ¼ 4 l0 ¼ 5 l0 ¼ 6 l0 ¼ 7 l0 ¼ 8

(2, 2) 0.287 0.163 0.130 0.122 0.117 0.115 0.113 0.111
(4, 2) 43.2 62.1 92.7 123 118 118 117 117
(4, 4) 3.62 0.00676 0.0114 0.0108 0.0104 0.0101 0.0100
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curvature quantities on the event horizon. Figure 2 shows
the amplitudes of the driving gravitational mode and
excited scalar modes for the same fiducial example as in
Fig. 1. Though we focus on driving by the dominant (2, 2)
mode, Table I indicates that modes can be driven by a (4, 4)
mode for even smaller values of h0.
During the inverse cascade, modes with frequencies 2−p

(p ∈ Z) times the parent mode frequency are excited by
parametric resonance. However, in a fully turbulent fluid,
transfers throughout theentire spectrum.Onepossiblemecha-
nism for this is in the gravitational case is through resonant
excitationofadditionalmodes,asoccurs insystemsofcoupled
oscillators. For example, two oscillators with frequencies ω1

andω2, and amplitudesA1ðtÞ andA2ðtÞ can drivemodeswith
frequencies ω0 ¼ ω1 � ω2, resulting in amplitudes propor-
tional to A1A2. These three-mode interactions may not be
as strong as the parametric resonance in this specific setup,
but they can redistribute later on to both higher and lower
frequencies, and fill in the gaps in the spectrum.
Observational consequences.—The parametric instabil-

ity discussed here focuses on rapidly spinning black holes,
where the QNMs decay slowly [41]. Theoretical models
arguing for such scenarios have been developed [42,43]
and, crucially, there is observational evidence for highly
spinning black holes [44,45]. The turbulent instability has
several possible signatures [46]. (1) Gravitational wave
structure: the turbulent behavior described can have an
impact on gravitational wave observations from large
mass-ratio mergers involving a rapidly spinning black hole.
Such scenarios can arise, for instance, in the inspiral of

supermassive binary black holes following galaxy mergers.
After merger, the final black hole rings down by emitting
gravitational waves primarily through the (2, 2) mode. The
magnitude of the initial perturbation h0 is proportional to the
mass ratio, and so for smaller μ values Eq. (7) is not satisfied,
and distant observers should see mainly the (2, 2) mode
during the entire ringdown. However, if the initial perturba-
tion is strong enough, modes with m ¼ 1 will be parametri-
cally excited. The growth of the modes can allow them to
overtake the amplitude of the (2, 2) mode, in which case
a treatment of the back reaction is needed. However, it is
possible that a distant observer could measure a growing
amplitude of some modes during the ringdown, a clear
evidence of the instability, perhaps followed by complicated
and turbulent behavior in the mode structure of the observed
signal. Gravitational wave signals from supermassive binary
black hole mergers would be detectable by pulsar timing
arrays (e.g., Ref. [47]) while stellar mass systems are the
target of the LIGO, VIRGO, and KAGRA Collaborations
[48–50]. (2) Jitter in the black hole geometry: the phenom-
ena discussed indicates that the geometry of the spacetime
around a black hole can acquire a rich multipolar structure as
as a result of an object falling into a rapidly spinning black
hole. This structure will impact the surrounding region and,
in particular, may cause angular time-dependent shifts in the
location of the inner most stable circular orbit. The fractional
impact on the inner disk structure would be within an order
of magnitude of h0ðtÞ (∼0.5% for our fiducial model), with a
corresponding impact on the emission lines of the accreting
material. Such variations would have a unique time signa-
ture, and be measurable to the same accuracy as fractional
changes in the spin of the black hole (see, e.g., Ref. [51] for
an analysis of what is feasible with very large base
interferometry).
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in validating the inner product used here. We also thank

FIG. 1 (color online). Snapshots of parametrically driven
modes on a sphere of constant radius. We plot the dominant
(2, 2) spin s ¼ −2 spheroidal harmonic from a collective driving
mode, plus the spin-0 (l, 1) spheroidal harmonics for all of the
growing scalar modes. Initially h0ðt ¼ 0Þ ¼ ð1=8Þ ffiffiffi

ϵ
p

, and ϵ ¼
2 × 10−3 (a ¼ 0.998). In this case, modes with 2 ≤ l ≤ 6 are
resonantly excited, with the higher l modes growing faster; the
l > 6 modes are not ZDMs for this a. At t=M ¼ 0, the scalar
modes are seeded with equal amplitude 10% of the gravitational
mode, and random phases. (a) Reference spin s ¼ −2, (2, 2)
spheroidal harmonic. (b) At time t=M ¼ 0, the seed modes are
visible only where the gravitational mode is weak. (c) At time
t=M ¼ 16, more angular structure has developed. (d) The har-
monics at t=M ¼ 32 when the amplitude of the (6, 1) scalar mode
is closest to the (2, 2) mode.
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FIG. 2 (color online). Growth of the scalar quasinormal mode
amplitudes due to a (2, 2) perturbation, on a logarithmic scale,
using the same parameters as in Fig. 1. After initial parametric
growth, the driving of each mode turns off as h0ðtÞ decays, after
which the scalar mode decays at its standard exponential rate,
which is larger for modes with larger l.
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