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Recently it was shown that the resources required to implement unitary operations on a quantum
computer can be reduced by using probabilistic quantum circuits called repeat-until-success (RUS) circuits.
However, the previously best-known algorithm to synthesize a RUS circuit for a given target unitary
requires exponential classical runtime. We present a probabilistically polynomial-time algorithm to
synthesize a RUS circuit to approximate any given single-qubit unitary to precision ε over the Cliffordþ T
basis. Surprisingly, the T count of the synthesized RUS circuit surpasses the theoretical lower bound of
3 log2ð1=εÞ that holds for purely unitary single-qubit circuit decomposition. By taking advantage of
measurement and an ancilla qubit, RUS circuits achieve an expected T count of 1.15 log2ð1=εÞ for single-
qubit z rotations. Our method leverages the fact that the set of unitaries implementable by RUS protocols
has a higher density in the space of all unitaries compared to the density of purely unitary implementations.
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Introduction.—With rapid maturation of quantum devi-
ces, efficient compilation of high-level quantum algorithms
into lower-level physical circuits becomes an important
step toward a scalable quantum computer architecture.
Scalability necessitates the use of fault-tolerant compo-
nents in order to reliably perform computations of arbi-
trary length. A universal gate set that arises, e.g., from the
concatenated Steane code or the surface code family, is
Cliffordþ T basis, consisting of the two-qubit controlled-
NOT gate (CNOT) and the single-qubit Hadamard H and
T ¼ Rzðπ=4Þ gates. Efficient algorithms to ε-approximate
a single-qubit gate with an fH; Tg circuit exist [1,2].
Any z rotation requires a number of T gates close to
the information-theoretic lower bound of 3 log2ð1=εÞ
([3], Sec. 9). For general rotations, Euler angle decom-
positions [4] eiδRzðαÞHRzðβÞHRzðγÞ for α; β; γ; δ ∈ R
can be used to obtain the best-known upper bound of
9log2ð1=εÞ.
Recently, Paetznick and Svore [5] showed that by using

probabilistic circuits—specifically, a class of circuits called
repeat-until-success (RUS) circuits—the number of T gates
can be reduced by a factor of at least 2.5. Their synthesis
algorithm is an optimized exhaustive search with expo-
nential classical runtime, limiting its practicality for a wide
range of precisions ε. In this Letter, we develop an efficient
algorithm to synthesize RUS circuits for approximating
a given single-qubit unitary that runs in probabilistically
polynomial classical runtime for any precision ε. We show
that for z rotations the expected number of T gates required
upon success scales roughly as 1.15 log2ð1=εÞ, improving
over the 3 log2ð1=εÞ lower bound on ancilla-free, unitary
methods [1,2]. For general rotations, our method leads to
RUS protocols with an expected T count of 3.45 log2ð1=εÞ,
improving over the upper bound of 9 log2ð1=εÞ for unitary
circuits. A salient feature of our approach is the solution

of the approximation step via integer relation problems
and the classical PSLQ algorithm (Partial Sums of
sQuares with Lower trapezoidal orthogonal decomposition,
see [6]).
Intuitively, RUS protocols have a higher density and thus

better approximation properties, specifically for z rotations,
as illustrated in Fig. 1, with further explanation given
below. Much of our technical contribution renders this
intuition rigorous by translating the increase in density due
to measurement into shorter circuit sizes.
The use of measurement to improve the computational

power of unitary circuits is not entirely new. Research on
measurement-based computation [7–9] suggests that quan-
tum measurement allows circuits additional computational
power at a lower cost in circuit resources. The use of
measurement in the context of decomposition appears in
methods of [10–13].
RUS circuits.—The general layout of the RUS protocol

[5] is shown in Fig. 2. Here U is a unitary operation acting
on nþm qubits, of which n are target qubits and m are
ancillary qubits. The protocol uses measurement of the
ancilla qubits in such a way that one measurement outcome
is labeled “success” and all other measurement outcomes
are labeled “failure.” Let the probability of the success
outcome be p and the unitary applied to the target qubits
upon measurement be V. Let CðUÞ be the cost of the circuit
that performsU. We assume for simplicity that any operator
Wi performed on target qubits upon a failure measurement
is unitary and that each W−1

i can be implemented by a
circuit with the same fixed cost CðWÞ.
In the RUS protocol, the circuit in the dashed box is

repeated on the ðnþmÞ-qubit state until the success
measurement is observed. Each time a failure measurement
is observed, an appropriate operatorW−1 is applied in order
to revert the state of the target qubits to their original input
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state jψi. The number of repetitions of the circuit is finite
with probability 1. The statistical expectation of the overall
cost to observe success is

E½CðVÞ� ¼ ½CðUÞ þ CðWÞð1 − pÞ�=p: ð1Þ

We refer to the circuit implementing the unitary U as the
RUS design and its cost CðUÞ as the design cost.
We measure the cost of a circuit in terms of T gates since

fault-tolerant implementations of T gates typically require
1 to 2 orders of magnitude more resources than a fault-
tolerant Clifford gate [14–16]. In the following we focus on
the case where the corrections Wi are Clifford gates, i.e.,
CðWiÞ ¼ 0. This has the effect of reducing Eq. (1) to
E½CðVÞ� ¼ CðUÞ=p. We refer to the number of T gates in a
circuit as the T count and the number of time steps
containing T gates as the T depth. The optimal T count
has been proven to be an invariant of the unitary operation
represented by a Cliffordþ T circuit [17–19].
Background.—At the heart of Cliffordþ T synthesis is

the algebraic number ring Z½ω�, where ω ¼ eiπ=4, also
known as the ring of cyclotomic integers of order eight. It
consists of all numbers of the form aω3 þ bω2 þ cωþ d,
where a; b; c; d are arbitrary integers. It was shown in [20]
that a unitary V on n qubits is representable exactly by
a Cliffordþ T circuit if and only if it is of the form
V ¼ 1=

ffiffiffi
2

p
kM, where M is a matrix over Z½ω� and k is

some non-negative integer. Equivalently, we can assume
that M is a matrix over Z½i; 1= ffiffiffi

2
p �. To satisfy the unitary

condition, we require MM† ¼ 2k12n . We employ methods
of [2,21] in our main algorithm below.
In Fig. 1 we illustrate a key advantage of RUS designs

for approximating z rotations. We consider 1(a) unitary
protocols and 1(b) RUS protocols with one ancilla qubit
to implement a unitary V ¼ ½xy −y

�
x� �. In 1(a) we require

that x ∈ Z½i; 1= ffiffiffi
2

p � satisfies the norm equation jyj2 ¼
1 − jxj2 (red points). In 1(b) we display the upper left
entry z of a two-qubit unitary U that defines a RUS design
(blue points). Here z is of the form x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ jyj2

p
, where

x ¼ x0=
ffiffiffiffiffi
2l

p
, y ¼ y0=

ffiffiffiffiffi
2l

p
with x0, y0 ∈ Z½ω�, l ¼ 3 and

satisfies the norm equation jzj2 ¼ 2l − jx0j2 − jy0j2.
The axes in 1(a) and 1(b) denote the real and imaginary
part and range from 0 to 1. Only the upper left quadrant of
the unit circle is shown; the remaining quadrants are
given by symmetry. With respect to the metric dðV; V 0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½jtrðV†V 0Þj=2�

p
, the 144 z rotations shown in blue in

1(b) exhibit distances between nearest neighbors of at most
εmax ¼ 0.0676. In 1(a) only 40 circuits are within distance
εmax of any z rotation (dark red points). In the asymptotic
limit for the T count, this ratio tends to 3, one of our
main contributions. Further points are at cutoff distances
εmax ¼ 0.1398 (light red) and 0.2139 (very light red),

FIG. 2. RUS design to implement unitary V.

FIG. 1 (color). Approximationsof z rotations by (a) unitary circuits of T depth of at most 8 and (b) RUS protocols with a comparable
expected T depth of at most 7.5.
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corresponding to RUS protocols with expected T depths of
6.7 and 6.2, respectively. Intuitively, the blue points are
akin to rational numbers, and the red points to integers.
Thus, the blue points provide a much denser covering than
the red points. We analyze the density with which cyclo-
tomic rationals are distributed in Sec. A of [27].
Overview of the algorithm.—Our algorithm ε approx-

imates an axial rotation RzðθÞ by a RUS circuit over the
Cliffordþ T basis in four stages, shown in Fig. 1 in Sec. B
of [27]. We measure the distance between a target unitary
V and its approximation V 0 via the invariant metric
dðV; V 0Þ [22].
The first stage approximates the phase factor eiθ with a

unimodal cyclotomic rational, i.e., an algebraic number of
the form z�=z, where z ∈ Z½ω�, by finding an approximate
solution of an integer relation problem. We note that z is
defined up to an arbitrary real-valued factor. The second
stage performs several rounds of random modification
z ↦ ðrzÞ, where r ∈ Z½ ffiffiffi

2
p �, in search of an r such that

(a) the norm equation jyj2 ¼ 2L − jrzj2 is solvable for
y ∈ Z½ω�; L ∈ Z, and (b) the one-round success probability
jrzj2=2L is sufficiently close to 1. In the third stage, the two-
qubit matrix corresponding to the unitary part of the RUS
circuit is assembled. During the fourth stage, a two-qubit
RUS circuit that implements the desired RzðθÞ rotation on
success and an easily correctable Clifford gate on failure is
synthesized.
Stage 1: Cyclotomic rational approximation.—Thephase

eiθ is representable exactly as z�=z if andonly if the expression
a½cosðθ=2Þ − sinðθ=2Þ� þ b

ffiffiffi
2

p
cosðθ=2Þ þ c½cosðθ=2Þ þ

sinðθ=2Þ� þ d
ffiffiffi
2

p
sinðθ=2Þ is exactly zero (see Sec. C of [27]

for proof). By making this expression arbitrarily small,
then jz�=z − eiθj will be arbitrarily small. Let θ be a real
number and z ¼ aω3 þ bω2 þ cωþ d; a; b; c; d ∈ Z be a
cyclotomic integer. Then jz�=z − eiθj < ε if and only
if ja½cosðθ=2Þ− sinðθ=2Þ�þb

ffiffiffi
2

p
cosðθ=2Þþc½cosðθ=2Þþ

sinðθ=2Þ�þd
ffiffiffi
2

p
sinðθ=2Þj< εjzj, which can be shown by

direct complex expansion of ie−iθ=2ðz� − eiθzÞ.
To approximate any phase eiθ with a cyclotomic rational

z�=z, where z ∈ Z½ω�, we customize the PSLQ integer
relation algorithm [6,23] which attempts to find an integer
relation between ½cosðθ=2Þ − sinðθ=2Þ�, ffiffiffi

2
p

cosðθ=2Þ,
½cosðθ=2Þ þ sinðθ=2Þ�, ffiffiffi

2
p

sinðθ=2Þ. It terminates iterative
attempts if and only if jz�=z − eiθj < ε [24]. Upon termi-
nation, our customization also outputs the integer relation
candidate fa; b; c; dg for which the condition has been
satisfied. The desired cyclotomic integer is then given by
z ¼ aω3 þ bω2 þ cωþ d. We find empirically (by simu-
lation) that the PSLQ performance is very close to optimal
with jzj < κε−1=4, where κ ¼ 3.05� 0.28.
Stage 2: Randomized search.—Once the desired z is

obtained, the next stage is to include z in a unitary

1ffiffiffi
2

p
L

�
z y

−y� z�

�
; ð2Þ

where y ∈ Z½ω� and L ∈ Z. We would like jzj2=2L to be
reasonably large since this value equals the one-round
success probability of the RUS circuit. Unfortunately, the
majority of z values do not allow for this. To create a
unitary of the form, Eq. (2), we seek a y that satisfies the
normalization condition ðjyj2 þ jzj2Þ=2L ¼ 1, or equiva-
lently, jyj2 ¼ 2L − jzj2. It is known [3,20] that jzj2 belongs
to the real-valued ring Z½ ffiffiffi

2
p � and thus so does 2L − jzj2.

Given an arbitrary ξ ∈ Z½ ffiffiffi
2

p �, the identity jyj2 ¼ ξ,
considered as an equation for an unknown y ∈ Z½ω�, is
called a norm equation in Z½ω�. A necessary condition for
easy solvability of the norm equation is that in Eq. (2),
jzj2 ≤ 2L and jz•j2 ≤ 2L, where ð·Þ•∶Z½ω� → Z½ω� extends
the ω ↦ ð−ωÞ map.
Our strategy generalizes that of [3]. We consider a fixed

initial z ∈ Z½ω�where we can replace z in z�=z by rz, where
r ∈ Z½ ffiffiffi

2
p � is arbitrary, without changing the fraction. For a

randomly picked r ∈ Z½ ffiffiffi
2

p �, we set Lr ¼ ⌈log2ðjrzj2Þ⌉.
We want Lr close to its lower bound L1 ¼

⌈log2ðjzj2Þ⌉. For some small δ > 0, we constrain
Lr ≤ ð1þ δÞL1, which implies r2 ≤ 2δL1 . Moreover, we
also require ðr•Þ2 ≤ 2δL1 . Thus r is sampled from Sδ ¼
faþ b

ffiffiffi
2

p ja; b ∈ Z; ja� b
ffiffiffi
2

p j ≤ 2δL1=2g. The cardinality,
cardðSδÞ, is approximately equal to 21=2þδL1 , corresponding
to the area of fja� b

ffiffiffi
2

p j ≤ 2δL1=2g in the ða; bÞ plane.
While cardðSδÞ is Oð1=εδÞ and thus exponential in

log2ð1=εÞ, under a certain working conjecture it suffices
to use polylogarithmically many random values of r. We
conjecture (and have supporting empirical evidence) that
for large enough δL1 there are Ωð½2δL1=ðδL1Þ� values of
r ∈ Sδ for which the norm equation jyj2 ¼ 2Lr − jrzj2 is
easily solvable, and in particular for large enough k there
are Ω½2δL1=ðkδL1Þ� values for which the equation is
solvable and pðrÞ > 1 − 1=k. We discuss this conjecture
in more detail in Sec. D.2 of [27].
Setting k ¼ L1, we infer from the conjecture that a

sample of a size inOðδL2
1Þ should contain at least one value

of r such that the equation jyj2 ¼ 2Lr − jrzj2 is easily
solvable and pðrÞ > 1 − 1=L1. For such r the expected
average cost of a RUS circuit that implements ðrzÞ�=ðrzÞ is
less than ½2ð1þ δÞL1 þ const�=ð1 − 1=L1Þ. The latter con-
verges in the asymptotic limit to 2ð1þ δÞL1 þ c0, where c0
is a constant.
These observations lead to an algorithm for stage 2 as

shown in Fig. 2 in Sec. D. 1 of [27]. It takes the value δ and
sample size factor sz as hyperparameters. The T count
function computes the minimal T count of a Cliffordþ T
decomposition of a unitary (without necessarily performing
such decomposition) and can be efficiently computed using
methods in [17,25].
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Stage 3: RUS unitary design.—When the randomized
normalization algorithm succeeds for a given z, we can
construct a single-qubit unitary V of the form, Eq. (2),
where y; z ∈ Z½ω�; L ∈ Z, and jzj2=2L > 1=2 which maps
to the probability of success of the RUS circuit. The unitary
V can be decomposed exactly into an optimal ancilla-free
Cliffordþ T circuit using methods in [20].
The algorithm in Fig. 3 outputs the unitary V. It calls the

randomized normalization algorithm and is designed to
combat its infrequent failure. A failure can only happen if we
never encounter an easily solvable norm equation for any
random sample. Every iteration of the precision ϵ ← ϵ=2 in
thewhile loop of the algorithm adds szmore candidate norm
equations to the search space. For large enough sz, the
probability of never encountering a solvable norm equation
decreases exponentially with the number of iterations.
Stage 4: RUS circuit synthesis.—From V we construct a

two-qubit unitary U such that U ¼ ½V
0

0
V†�. We synthesize U

as a two-qubit repeat-until-success circuit on one ancilla
qubit and one target qubit, such that the circuit applies a z
rotation of z�=z to the target qubit on success and the
Pauli-Z operation on failure.
The unitary U can be realized as a two-qubit Cliffordþ

T circuit such that the T count is the same or up to 9 gates
higher than the T count of the optimal single-qubit
Cliffordþ T circuit for unitary V (see Sec. E in [27] for
the proof). The intuition is that given two single-qubit
Cliffordþ T circuits with the same T count, one circuit can
be manufactured from the other by insertion and deletion
of Pauli gates, plus the addition of at most two non-Pauli
Clifford gates which can result in a small potential T-count
increase. The pseudocode for the two-qubit RUS circuit
synthesis algorithm is given in Fig. 3 in Sec. E of [27].
Moreover, we find that half of the Pauli gates in the RUS
circuit can be eliminated using a set of rewrite rules,
described in Sec. F of [27]. We present an example of
applying our RUS synthesis algorithm to the rotation
Rzðπ=64Þ in Sec. G of [27].

Numerical results.—We evaluate the performance
of our algorithm on a set of 1000 angles randomly drawn
from the interval ð0; π=2Þ at 25 target precisions
ε ∈ f10−11;…; 10−35g. Figure 4 plots the precision ε versus
the mean (and standard deviation) expected T count across
the RUS circuits generated for the set of 1000 random
angles. The regression formula for the mean expected
T count is 3.817 log10ð1=εÞ þ 9.2 ¼ 1.149 log2ð1=εÞ þ
9.2 (blue). We also plot the mean T count achievable by
Ref. [1] (green). We find similar results for the synthesis of
Fourier angles (Sec. H of [27]).
Conclusions.—We have developed an efficient algorithm

to synthesize an arbitrary single-qubit gate into a RUS
circuit. The leading term for the expected T count is given
by c log2ð1=εÞ, where c is approximately 1.15 for axial
rotations. On average, our algorithm achieves a factor of 2.5
improvement over the theoretical lower bound for ancilla-
free unitary Cliffordþ T decomposition, significantly
reducing the resources required to implement quantum
algorithms on a device.
We have also developed generalizations of RUS con-

structions to a broader set of targets including all unitary
operations representable over the field of cyclotomic
rationals. Our generalized designs allow tight control over
the T depth and are presented in Sec. I of [27]. Future work
will extend information-theoretic lower bounds for the
expected cost of the RUS circuits to the generalized
RUS designs. We plan to develop compilation algorithms
to synthesize generalized RUS designs and to characterize
the relationship between the number of ancillas, the
properties of the RUS design, and their expected T counts.

We thank Gerry Myerson for pointing us to Wolfgang
Schmidt’s book [26]. We thank the QuArC team for
discussing early versions of this work.

FIG. 4 (color online). Precision ε versus mean expected T count
for a set of 1000 random angles.

FIG. 3. Algorithm to design the unitary V.
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