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We propose a generalization of the Bloch sphere representation for arbitrary spin states. It provides
a compact and elegant representation of spin density matrices in terms of tensors that share the most
important properties of Bloch vectors. Our representation, based on covariant matrices introduced by
Weinberg in the context of quantum field theory, allows for a simple parametrization of coherent spin states,
and a straightforward transformation of density matrices under local unitary and partial tracing operations.
It enables us to provide a criterion for anticoherence, relevant in a broader context such as quantum

polarization of light.
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The concept of spin is ubiquitous in quantum theory and
all related fields of research, such as solid-state physics,
molecular, atomic, nuclear or high-energy physics [1-5].
It has profound implications for the structure of matter as a
consequence of the celebrated spin-statistics theorem [6].
The spin of a quantum system, be it an electron, a nucleus,
or an atom, has also been proven to be a key resource for
many applications such as in spintronics [7], quantum
information theory [8], or nuclear magnetic resonance [9].
Simple geometrical representations of spin states [10] allow
one to develop physical insight regarding their general
properties and evolution. Particularly well studied is the
case of a single two-level system, formally equivalent
to a spin-1/2. In this case, the geometric representation
is particularly simple. Indeed, the density matrix can be
expressed in a basis formed of Pauli matrices and the
identity matrix, leading to a parametrization in terms of a
vector in R3. Pure states correspond to points on a unit
sphere, the so-called Bloch sphere, and mixed states fill the
inside of the sphere, the “Bloch ball”. The simplicity of this
representation help visualize the action and geometry of
all possible spin-1/2 quantum channels [11]. For arbitrary
pure spin states, another nice geometrical representation
has been developed by Majorana in which a spin-j state
is visualized as 2j points on the Bloch sphere [12].
This so-called Majorana or stellar representation has been
exploited in various contexts (see, e.g., [11,13-17]), but
cannot be generalized to mixed spin states.

Given the importance of geometrical representations,
there have been numerous attempts to extend the previous
representations to arbitrary mixed states. The former rely
on a variety of sophisticated mathematical concepts such as
su(N)-algebra generators [10,18,19], polarization operator
basis [20-22], Weyl operator basis [23], quaternions [24],
octonions [25], or Clifford algebra [26]. In the present
Letter, we propose an elegant generalization to arbitrary

0031-9007/15/114(8)/080401(5)

080401-1

PACS numbers: 03.65.Aa, 03.65.Ca

spin-j of the spin-1/2 Bloch sphere representation based on
matrices introduced by Weinberg in the context of quantum
field theory [27]. The main result of the Letter is Theorem
2, which allows us to express any spin-j density matrix as a
linear combination of matrices with convenient properties.
The remarkable features of our representation are especially
reflected in the simple coordinates of coherent states,
transformation under SU(2) operations, and the simplicity
of the representation of reduced density matrices. To
illustrate the usefulness of such a representation, we show
that it allows us to give an easy characterization of
anticoherent spin states. Such states have been studied
in various contexts, such as quantum polarization of light
(see, e.g., [28,29]), spherical designs [30], as well as in the
search for maximally entangled symmetric states [31]. We
believe that our representation should prove useful in many
of the contexts where the spin formalism is used.

We construct this parametrization of a spin-j density
matrix p from the set of 4% covariant matrices [27].
Defining the four-vector ¢ = (qg,q1,92,93) = (4o, qQ),
Weinberg’s covariant matrices S, fao i with 0 < y; <3,
are constructed from products of components of
J=(J1,J5,J3) with J, (1 <a <3), the usual (2j+ 1)-
dimensional representations of angular momentum opera-
tors. They can be obtained by expanding the square of
the (2j + 1)-dimensional matrix corresponding to the (j, 0)
representation of a Lorentz boost in direction ¢, which
can be put in the form [27]

1Y) (q) = (g3 — |q|?) 14, (1)

with 5, = arctanh(—|q|/gy) and § = q/|q|. Matrices
Sypn... 1y ATE defined in [27] by identifying the coefficients
of the multivariate polynomial with variables g, q;, g2, ¢3

in Eq. (1) with those of the polynomial

0V(g) = (=1 4,y -Gy, Sy (2)
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(we use Einstein summation convention for repeated indices). An explicit expression for ITV) (g) is given in [27] as

~ (% - q?)*
2k

for integer j, and

i—1/2 i1/2—
i-1/ (q(z)_qz), 1/2—k
(2k + 1)!

n9(q) = (g3 — )" (=q0 —2q3) = ) |
k=1

for half-integer j. The identity matrix is implicit in front of
constant terms. For instance, identifying the coefficient of
q%j in these expressions, we get that Sy o is the (2j + 1)-
dimensional identity matrix, 15, ;. The matrices S, ,, o
are Hermitian matrices, invariant under permutation of
indices, and they obey the following linear relation:
gﬂlﬂzsﬂlmmﬂzj - 0’ (5)
where g = diag(—, +, +, +).
Let us briefly consider the simplest examples. From
Eq. (4), the explicit expression of I1)(g) for spin-1,/2 reads

N2 (q) = —go - 2q-J. (6)

where J, are spin-1/2 representations of the angular
momentum operators. Identifying with Eq. (2) directly
gives Sy = o( and S, = 2J, = 0,, where o is the 2 x 2
identity matrix and o, are the usual Pauli matrices. The
usual Bloch sphere representation for an arbitrary spin-1,/2
density matrix p = %00 + %X-o‘ can then be expressed in
terms of the Sﬂl O<pu <3)as

1
pP= Exﬂlsﬂ] (7)

with the Bloch vector x = tr(pe) and xy = 1.
For j =1, the equality between Egs. (2) and (3) for
M (g) reads

(95— &*) +2aJ(@T + q0) = 94,9, Sy (8)
Identifying coefficients of this quadratic form yields
SOO = Jo, SaO = Ja and Sab = Jan + JbJa - 5abJ0 Wlth
Jo the 3 x 3 identity matrix. Again, the set of S, , matrices
can serve to express any spin-1 density matrix p as

1
P = Z'xﬂlﬂzsﬂlllz ©)

with coordinates

xﬂlﬂz = tI'(/)S”]M). (10)

Equations (3) and (4) can be used to generalize this
expansion to arbitrary j, as we will show in Theorem 2.
The main property of the covariant matrices is given by
Theorem 1 below. We first give a useful lemma.

k=1

(2q9) (H[(zq-J>2 - <2rq>21)<zq‘J+quo> @3

r=1

k
(H[(zq-J>2 ~(2rq - q>21) 249+ (2kgo+ q0)] (@)
r=1

Lemma 1: Let |a) be a spin-j coherent state, defined for
a= e cot(0/2) with 0 € [0, 7] and ¢ € [0, 2z by

AT
(11)

m=-j
in the standard angular momentum basis {|j,m): —j <
m < j}, and let n = (sin & cos @, sin @ sin ¢, cos ). Then

J.m)

(alIV(g)|a) = (=1)¥(go + q'm)*. (12)

The proof of this lemma is based on the SU(2) disen-
tangling theorem and can be found in the Supplemental
Material [32]. One of its consequences is that, by identify-
ing coefficients of the polynomial in g, in Eq. (12), we get

<a|Sﬂlﬂ2~-~#2j|a> = nmnﬂz"‘nﬂzj’ (13)

with ny = 1.

In the Majorana representation, any pure spin-j state is
viewed as a permutation symmetric state of a system of
N =2 spin-1/2, or equivalently, as an N-qubit symmetric
state. The Hilbert space H = C? of an N spin-1/2 system
has dimension 2" but its symmetric subspace Hg has only
dimension N + 1 = 2j + 1. It is spanned by the symmetric
Dicke states

() _
IDy") —NZ”]L--,-_{U%

N-k k

k=0,...N, (14)

where the sum runs over all permutations of the string with
N — k spin down and & spin up, and V' is the normalization

constant. The Dicke state |D%€>> corresponds to |j, m) with
j=N/2and m =k—N/2.

Let L£(H) be the Hilbert space of linear operators acting
on the finite-dimensional space H. An operator basis for
L(H) equipped with the standard Hilbert-Schmidt inner
product is given by the set of the 4" generalized Pauli
matrices defined as the N-fold tensor products of the 2 x 2
matrices o6y, 6|, 0,, 03 [8],

Cuips... iy

=0, ®0,Q...Q0,,. (15)
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These Hermitian operators verify the relations
_ 9N
tr(6y sy i Cryvs) = 2 O, Opppy - Oy and thus form

an orthogonal basis. Any state p of N spin-1/2 can be
expanded in this basis as

1
P = 58 Mg iy Cpuspia- oy (16)
where x, ,, . are real coefficients given by

Xassiy.y = T(PC ) (17)

We can now prove the following theorem:

Theorem 1: The Weinberg covariant matrices defined
in Eq. (2) are given by the projection of tensor products
of Pauli matrices into the subspace Hg of states that
are invariant under permutation of particles. Namely,

Mo |D%‘)><D1(\l,‘>| the projector onto
matrix corresponds to the (N + 1)-

denoting by Pg=
Hs, the Sﬂ1ﬂ2~--ﬂN

dimensional block spanned by the |D%‘)) of the matrix
Psﬂ

s MZ___”NPL i.e., in terms of matrix elements

k
(DYIS

4 k 14
vy DY) = (DY |6 DY), (18)

HiH2---HN
with 0 <k,Z < N.

Proof—Let S, , ., = PsamﬂzmﬂNPj;. Any spin-j
coherent state |@) defined by Eq. (11) can also be written
as the tensor product of identical spin-1/2 coherent states.
As a symmetric state, |a) is invariant under Pg, i.e.,

|a> = P5|a>7 so that <a|Sﬂ1ﬂ2...ﬂN|a> = <a|6ﬂ1ﬂ2...y,\,

...n,,.. Using Eq. (13), we thus have

a) =

<a‘§ﬂ1ﬂ2...ﬂ1\/|a> = <a|Sﬂ]ﬂ2...ﬂN|a> (19)

for all a; i.e., the Husimi functions of the two operators

are identical. Therefore, S, , .. and Smuz.--;m coincide
in H S- |

In other words, instead of obtaining the Weinberg
matrices from the expansion of the rather complicated
Egs. (3) and (4), we can construct them simply by
projecting the corresponding tensor product of Pauli
operators into the symmetric subspace. In order to fully
exploit the consequences of this fact, we need some basic
notions of frame theory [35].

A family of vectors |¢;), i € {l,...,M}, is called a
frame for a Hilbert space H with bounds A, B €0, oo, if

M
Allwll® <D [wlg)* < Bllyll, ¥lw) € H. (20)
i=1

If A = B, then the frame is called an A-tight frame.
Orthonormal bases are a special case of A-tight frames.
In particular, the generalized Pauli matrices [Eq. (15)]
form—up to normalization—an orthonormal basis of
L(H), and are in fact an A-tight frame, which verifies

Eq. (20) with A =B =2" and M = 4". According to
Proposition 22 in [35], a frame of a Hilbert space H with
bounds A, B that is orthogonally projected to a subspace
PH is a frame of PH with the same bounds A, B.
Therefore, we have as a corollary of Theorem 1 that the
set of covariant matrices S, ,, , forms a 2N_tight frame
for L(Hy).

Tight frames are in a sense a generalization of ortho-
normal bases, as they allow an expansion over the
elements of the frames with the same formulas as for an
orthonormal basis; i.e., for all |y) € H, we have |y) =
ATLS™™ (pilw) ;) (proposition 20 in [35]). This immedi-
ately entails the following result, which provides a gener-
alization of the Bloch sphere representation for spin-1/2,
Eq. (7), to any spin:

Theorem 2: For general spin-j, the 4V Hermitian
matrices S, ,, . (With N = 2j) provide an overcomplete
basis (more precisely, a 2V -tight frame) over which p can be
expanded, that is, any state can be expressed as

1

p= 2_le41/42~~/4NS/41}42'~/4N’ (21)
with coefficients
Xty = TSy oy )s (22)

real and invariant under permutation of the indices.
Since Sy o 1s the identity matrix, the condition trp = 1
for density matrices is equivalent to xo, o = 1. The tight
frame property allows one to write the Hilbert-Schmidt
scalar product of any two Hermitian operators p and p’ with

coordinates x,, ,, ,. and x, , . as the scalar product of
coordinates, more precisely
(pp) = —x, . . o (23)
ppP) = ON TH My HN TR PN

The condition trp> <1 that every state must satisfy
- 2 N
translates into », ...> 5, Xz, . <2". Note that from

Eq. (22) and the definition of S, , . . the coordinates

Xy appear as the coefficients of (—1)V(ITV)(q)),
which is a multivariate polynomial in variables
q90-491-92- 93,

(DMWY = X o -+~ Gy (24)

Due to the overcompleteness of the S, ,, . the coor-
dinates x,, ,, ., in Eq. (21) are so far not unique. However,
for a given spin-j density matrix p, Eq. (22) is
the unique choice of coordinates x, ,, . such that these
coordinates are real numbers, invariant under permutation of
the indices, and verifying the condition g, ,, %, 4, 4, =0
(see Proposition 1 in the Supplemental Material [32]).

The generalized Bloch representation Eq. (21) shares
with the Bloch representation of a spin-1,/2 several crucial
properties. First of all, using Egs. (13) and (22), we see that

coordinates of a coherent state are simply given by the
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product of components of the 4-vector n = (1,n), namely
Xty = M My, -1, - This generalizes the fact that the
Bloch vector representing a spin-1/2 state points in the
direction given by the angles defining the coherent state.
Secondly, under any SU(2) transformation, the Bloch
vector of a spin-1/2 simply rotates, i.e., transforms accord-
ing to x, — R,;x;, where R is a rotation matrix. Similarly,
for higher spins the tensor of coordinates of an arbitrary state
transforms according to x, . = Ry, Ry Xy 4
with R,;, the 3 x 3 rotation matrix and R, = R,o = 6,.
This is a consequence of a more general covariance property
of the basis matrices S, ,, . -Indeed, they were constructed
in such a way that for any element A of the Lorentz group,
with DU[A] the (2j + 1)-dimensional matrix associated
with A in the (j, 0) representation,
DUI[A]S DUIA]* = Al ..

HiH2-- BN

‘AZI}\\//SIJ]VZ...UN (25)

in the covariant-contravariant notation of [27]. From
Eq. (22), this property translates to coordinates x, ,, .-
For rotations R, the distinction between upper and lower
indices becomes irrelevant.

In addition to the shared advantages of a Bloch vector, our
generalized Bloch sphere representation [Eq. (21)] enjoys
additional convenient properties relevant for systems made
of many spin-1/2 or qubits. For instance, coordinates of
the spin-k reduced density matrix obtained by tracing the
spin-j matrix over j — k spins are simply given by

xﬂl Mok

= Xy, p12:0...0 (26)
(see Proposition 3 in the Supplemental Material [32]). Note
that in [36], a similar property was observed for the
coefficients in the expansion of p over generalized Pauli
matrices, and a formal Lorentz invariance of that expansion
was used very recently to generalize monogamy relations
of entanglement [37].

We now consider a few examples of states and give their
coordinates in our representation. The maximally mixed state

po = 1/(2j + 1)1, has coordinates Xpo sz, E1VED DY

) Jj—k)
Xy oDy Aoy = 22k+140 |Q|2k (27)

(see Proposition 2 in the Supplemental Material [32]).
Another example is given by the Schrodinger cat states

|W£Q> = (Ij.=j) + |/, 7))/V/2. By linearity of Eq. (21) and
of the trace, they have coordinates

) 1 —1/2-1/2] [1/2.1/2]
X =7 [H n, +H
N

+ Re {H

—1/2.1/2] } (28)

where nl*1/2#1/2l = (1,0,0,41) are the coordinates

of the coherent states [1,+£1)(1, &1 and nl=1/21/2 =
0,1,—i,0 are the coordinates of the non-Hermitian
—2( 3l

While the complete characterization of the set of coor-
dinates for which p is positive is difficult in any representa-
tion [18,21,23], our representation [Eq. (21)] allows one to
solve this problem explicitely for j = 1. The set of all spin-1
states is characterized by 8 real parameters. The trans-
formation of tensor x,, by rotation matrices under SU(2)
operations allows one to diagonalize the 3 x 3 block x,,
(1 <a,b <3), and Eq. (5) imposes > 3, u; =1 for the
eigenvalues p;, leaving five real parameters u,u,,
X = (xg1, X2, Xo3)- In this case, x coincides with u in
the representation found in [38]. We therefore immediately
obtain that up to two special cases of measure zero the set
of all spin-1 states can be represented as a two—parameter
family of ellipsoids in the space of vectors x (Eq. (21) in [38]
with w =x and w,, = x,,), thus providing a simple
geometrical picture of all spin-1 states.

As a direct application of our formalism, we give a simple
necessary and sufficient criterion for anticoherence of
spin states. Spin states are said to be anticoherent to order
t if {(n-J)) is independent on the unit vector n for
any k with 0 < k < ¢ [39]. Various characterizations have
been given [40]. Very recently, the case of pure but not
necessarily symmetric states was considered in [36,41]. The
definition of matrices S, ,, . ,, via (1) and (2) as a function
of J makes them most convenient for the characterization
of anticoherent states. One can show the following result:

Theorem 3: A spin-j state p, pure or mixed, is anti-
coherent to order ¢ if and only if its spin-(#/2) reduced density
matrix is the maximally mixed state py = 1/(r + 1)1,,.

The proof (see Supplemental Material for more detail
[32]) relies on the calculation of (IT1V)(g)) for an anti-
coherent state, using the Eqs. (3) and (4) and identifying
terms up to order ¢ with the expansion Eq. (27) of the
maximally mixed state. For instance, spin-j anticoherent
states to order 1 are characterized by (S,00..0) = .0
while anticoherent states to order 2 are characterized by
(Suw00..0) = diag(1,1/3,1/3,1/3). From the characteriza-
tion of anticoherence given by Theorem 3, one can easily
obtain another characterization based on coefficients of the
multipolar expansion of the density matrix. For a spin-j
density operator p, the expansion reads

2k '
P = Z Z pqul(ch) (29)

k=0 g—k

with p, = tr(pT,((J; T), where T,((J; are the irreducible tensor
operators [20]

G k1
Ty, = 2541 Z i i) (om, (30)

m,m'=—j
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and C%/ 14 are Clebsch-Gordan coefficients. The following
corollary of Theorem 3 can now be stated (see
Supplemental Material [32] for a proof).

Corollary 1: A spin-j state p is anticoherent to order ¢ if
and only if py, =0,Vk <1, Vg: —k<q <k

Note that in [31] the current characterizations were
obtained up to second order.

In summary, we have introduced a tensorial representa-
tion of spin states that leads to a natural generalization of
the Bloch sphere representation to arbitrary spin j, based
on Weinberg’s covariant matrices [27]. We have found a
convenient way of representing these matrices as projec-
tions of elements of the Pauli group into the symmetric
subspace of 2;j spins-1/2, proving that they form a tight
frame. Our representation shares beautiful and essential
properties with the one for spin-1/2 (or qubit), and
provides additional insight for larger spins that we have
used for a novel characterization of anticoherent spin states.
We expect that the mathematical elegance of our repre-
sentation will enable new insights in different fields of
physics where spins are relevant.
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