
Tensor Representation of Spin States

O. Giraud,1 D. Braun,2 D. Baguette,3 T. Bastin,3 and J. Martin3
1LPTMS, CNRS and Université Paris-Sud, UMR 8626, Bâtiment 100, 91405 Orsay, France

2Institut für theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
3Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège, 4000 Liège, Belgium

(Received 12 September 2014; published 25 February 2015)

We propose a generalization of the Bloch sphere representation for arbitrary spin states. It provides
a compact and elegant representation of spin density matrices in terms of tensors that share the most
important properties of Bloch vectors. Our representation, based on covariant matrices introduced by
Weinberg in the context of quantum field theory, allows for a simple parametrization of coherent spin states,
and a straightforward transformation of density matrices under local unitary and partial tracing operations.
It enables us to provide a criterion for anticoherence, relevant in a broader context such as quantum
polarization of light.
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The concept of spin is ubiquitous in quantum theory and
all related fields of research, such as solid-state physics,
molecular, atomic, nuclear or high-energy physics [1–5].
It has profound implications for the structure of matter as a
consequence of the celebrated spin-statistics theorem [6].
The spin of a quantum system, be it an electron, a nucleus,
or an atom, has also been proven to be a key resource for
many applications such as in spintronics [7], quantum
information theory [8], or nuclear magnetic resonance [9].
Simple geometrical representations of spin states [10] allow
one to develop physical insight regarding their general
properties and evolution. Particularly well studied is the
case of a single two–level system, formally equivalent
to a spin-1=2. In this case, the geometric representation
is particularly simple. Indeed, the density matrix can be
expressed in a basis formed of Pauli matrices and the
identity matrix, leading to a parametrization in terms of a
vector in R3. Pure states correspond to points on a unit
sphere, the so-called Bloch sphere, and mixed states fill the
inside of the sphere, the “Bloch ball”. The simplicity of this
representation help visualize the action and geometry of
all possible spin-1=2 quantum channels [11]. For arbitrary
pure spin states, another nice geometrical representation
has been developed by Majorana in which a spin-j state
is visualized as 2j points on the Bloch sphere [12].
This so-called Majorana or stellar representation has been
exploited in various contexts (see, e.g., [11,13–17]), but
cannot be generalized to mixed spin states.
Given the importance of geometrical representations,

there have been numerous attempts to extend the previous
representations to arbitrary mixed states. The former rely
on a variety of sophisticated mathematical concepts such as
suðNÞ-algebra generators [10,18,19], polarization operator
basis [20–22], Weyl operator basis [23], quaternions [24],
octonions [25], or Clifford algebra [26]. In the present
Letter, we propose an elegant generalization to arbitrary

spin-j of the spin-1=2 Bloch sphere representation based on
matrices introduced by Weinberg in the context of quantum
field theory [27]. The main result of the Letter is Theorem
2, which allows us to express any spin-j density matrix as a
linear combination of matrices with convenient properties.
The remarkable features of our representation are especially
reflected in the simple coordinates of coherent states,
transformation under SU(2) operations, and the simplicity
of the representation of reduced density matrices. To
illustrate the usefulness of such a representation, we show
that it allows us to give an easy characterization of
anticoherent spin states. Such states have been studied
in various contexts, such as quantum polarization of light
(see, e.g., [28,29]), spherical designs [30], as well as in the
search for maximally entangled symmetric states [31]. We
believe that our representation should prove useful in many
of the contexts where the spin formalism is used.
We construct this parametrization of a spin-j density

matrix ρ from the set of 42j covariant matrices [27].
Defining the four-vector q ¼ ðq0; q1; q2; q3Þ≡ ðq0;qÞ,
Weinberg’s covariant matrices Sμ1μ2…μ2j , with 0 ≤ μi ≤ 3,
are constructed from products of components of
J ¼ ðJ1; J2; J3Þ with Ja (1 ≤ a ≤ 3), the usual ð2jþ 1Þ-
dimensional representations of angular momentum opera-
tors. They can be obtained by expanding the square of
the ð2jþ 1Þ-dimensional matrix corresponding to the ðj; 0Þ
representation of a Lorentz boost in direction q, which
can be put in the form [27]

ΠðjÞðqÞ≡ ðq20 − jqj2Þje−2ηqq̂·J; ð1Þ
with ηq ¼ arctanhð−jqj=q0Þ and q̂ ¼ q=jqj. Matrices
Sμ1μ2…μ2j are defined in [27] by identifying the coefficients
of the multivariate polynomial with variables q0; q1; q2; q3
in Eq. (1) with those of the polynomial

ΠðjÞðqÞ ¼ ð−1Þ2jqμ1qμ2…qμ2jSμ1μ2…μ2j ð2Þ
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(we use Einstein summation convention for repeated indices). An explicit expression for ΠðjÞðqÞ is given in [27] as

ΠðjÞðqÞ ¼ ðq20 − q2Þj þ
Xj

k¼1

ðq20 − q2Þj−k
ð2kÞ! ð2q·JÞ

�Yk−1

r¼1

½ð2q·JÞ2 − ð2rqÞ2�
�
ð2q·Jþ 2kq0Þ ð3Þ

for integer j, and

ΠðjÞðqÞ ¼ ðq20 − q2Þj−1=2ð−q0 − 2q·JÞ −
Xj−1=2

k¼1

ðq20 − q2Þj−1=2−k
ð2kþ 1Þ!

�Yk

r¼1

½ð2q·JÞ2 − ð2rq − qÞ2�
�
½2q·Jþ ð2kq0 þ q0Þ� ð4Þ

for half-integer j. The identity matrix is implicit in front of
constant terms. For instance, identifying the coefficient of
q2j0 in these expressions, we get that S00…0 is the ð2jþ 1Þ-
dimensional identity matrix, 12jþ1. The matrices Sμ1μ2…μ2j

are Hermitian matrices, invariant under permutation of
indices, and they obey the following linear relation:

gμ1μ2Sμ1μ2…μ2j ¼ 0; ð5Þ
where g≡ diagð−;þ;þ;þÞ.
Let us briefly consider the simplest examples. From

Eq. (4), the explicit expression ofΠðjÞðqÞ for spin-1=2 reads
Πð1=2ÞðqÞ ¼ −q0 − 2q·J; ð6Þ

where Ja are spin-1=2 representations of the angular
momentum operators. Identifying with Eq. (2) directly
gives S0 ¼ σ0 and Sa ¼ 2Ja ¼ σa, where σ0 is the 2 × 2
identity matrix and σa are the usual Pauli matrices. The
usual Bloch sphere representation for an arbitrary spin-1=2
density matrix ρ ¼ 1

2
σ0 þ 1

2
x·σ can then be expressed in

terms of the Sμ1 (0 ≤ μ1 ≤ 3) as

ρ ¼ 1

2
xμ1Sμ1 ð7Þ

with the Bloch vector x ¼ trðρσÞ and x0 ¼ 1.
For j ¼ 1, the equality between Eqs. (2) and (3) for

Πð1ÞðqÞ reads
ðq20 − q2Þ þ 2q·Jðq·Jþ q0Þ ¼ qμ1qμ2Sμ1μ2 : ð8Þ

Identifying coefficients of this quadratic form yields
S00 ¼ J0, Sa0 ¼ Ja and Sab ¼ JaJb þ JbJa − δabJ0 with
J0 the 3 × 3 identity matrix. Again, the set of Sμ1μ2 matrices
can serve to express any spin-1 density matrix ρ as

ρ ¼ 1

4
xμ1μ2Sμ1μ2 ð9Þ

with coordinates

xμ1μ2 ¼ trðρSμ1μ2Þ: ð10Þ
Equations (3) and (4) can be used to generalize this

expansion to arbitrary j, as we will show in Theorem 2.
The main property of the covariant matrices is given by
Theorem 1 below. We first give a useful lemma.

Lemma 1: Let jαi be a spin-j coherent state, defined for
α ¼ e−iφcotðθ=2Þ with θ ∈ ½0; π� and φ ∈ ½0; 2π½ by

jαi ¼
Xj

m¼−j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2j

jþm

�s �
sin

θ

2

�
j−m

�
cos

θ

2
e−iφ

�
jþm

jj;mi

ð11Þ
in the standard angular momentum basis fjj; mi∶ − j ≤
m ≤ jg, and let n ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ. Then

hαjΠðjÞðqÞjαi ¼ ð−1Þ2jðq0 þ q·nÞ2j: ð12Þ

The proof of this lemma is based on the SU(2) disen-
tangling theorem and can be found in the Supplemental
Material [32]. One of its consequences is that, by identify-
ing coefficients of the polynomial in qμ in Eq. (12), we get

hαjSμ1μ2…μ2j jαi ¼ nμ1nμ2…nμ2j ; ð13Þ

with n0 ¼ 1.
In the Majorana representation, any pure spin-j state is

viewed as a permutation symmetric state of a system of
N ≡ 2j spin-1=2, or equivalently, as an N-qubit symmetric
state. The Hilbert space H≡ C2N of an N spin-1=2 system
has dimension 2N but its symmetric subspace HS has only
dimension N þ 1 ¼ 2jþ 1. It is spanned by the symmetric
Dicke states

jDðkÞ
N i ¼ N

X

π

j↓…↓|fflffl{zfflffl}
N−k

↑…↑|fflffl{zfflffl}
k

i; k ¼ 0;…; N; ð14Þ

where the sum runs over all permutations of the string with
N − k spin down and k spin up, andN is the normalization

constant. The Dicke state jDðkÞ
N i corresponds to jj; mi with

j ¼ N=2 and m ¼ k − N=2.
Let LðHÞ be the Hilbert space of linear operators acting

on the finite-dimensional space H. An operator basis for
LðHÞ equipped with the standard Hilbert-Schmidt inner
product is given by the set of the 4N generalized Pauli
matrices defined as the N-fold tensor products of the 2 × 2
matrices σ0; σ1; σ2; σ3 [8],

σμ1μ2…μN ¼ σμ1 ⊗ σμ2 ⊗ … ⊗ σμN : ð15Þ
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These Hermitian operators verify the relations
trðσμ1μ2…μNσν1ν2…νN Þ ¼ 2Nδμ1ν1δμ2ν2…δμNνN and thus form
an orthogonal basis. Any state ρ of N spin-1=2 can be
expanded in this basis as

ρ ¼ 1

2N
xμ1μ2…μNσμ1μ2…μN ; ð16Þ

where xμ1μ2…μN are real coefficients given by

xμ1μ2…μN ¼ trðρσμ1μ2…μN Þ: ð17Þ

We can now prove the following theorem:
Theorem 1: The Weinberg covariant matrices defined

in Eq. (2) are given by the projection of tensor products
of Pauli matrices into the subspace HS of states that
are invariant under permutation of particles. Namely,

denoting by PS ≡P
N
k¼0 jDðkÞ

N ihDðkÞ
N j the projector onto

HS, the Sμ1μ2…μN matrix corresponds to the ðN þ 1Þ-
dimensional block spanned by the jDðkÞ

N i of the matrix
PSσμ1μ2…μNP

†
S, i.e., in terms of matrix elements

hDðkÞ
N jSμ1μ2…μN jDðlÞ

N i ¼ hDðkÞ
N jσμ1μ2…μN jDðlÞ

N i; ð18Þ

with 0 ≤ k;l ≤ N.
Proof.—Let ~Sμ1μ2…μN ¼ PSσμ1μ2…μNP

†
S. Any spin-j

coherent state jαi defined by Eq. (11) can also be written
as the tensor product of identical spin-1=2 coherent states.
As a symmetric state, jαi is invariant under PS, i.e.,
jαi ¼ PSjαi, so that hαj ~Sμ1μ2…μN jαi ¼ hαjσμ1μ2…μN jαi ¼
nμ1nμ2…nμN . Using Eq. (13), we thus have

hαj ~Sμ1μ2…μN jαi ¼ hαjSμ1μ2…μN jαi ð19Þ

for all α; i.e., the Husimi functions of the two operators
are identical. Therefore, Sμ1μ2…μN and ~Sμ1μ2…μN coincide
in HS. □

In other words, instead of obtaining the Weinberg
matrices from the expansion of the rather complicated
Eqs. (3) and (4), we can construct them simply by
projecting the corresponding tensor product of Pauli
operators into the symmetric subspace. In order to fully
exploit the consequences of this fact, we need some basic
notions of frame theory [35].
A family of vectors jϕii, i ∈ f1;…;Mg, is called a

frame for a Hilbert space H with bounds A; B ∈�0;∞½, if

A∥ψ∥2 ≤
XM

i¼1

jhψ jϕiij2 ≤ B∥ψ∥2; ∀jψi ∈ H: ð20Þ

If A ¼ B, then the frame is called an A-tight frame.
Orthonormal bases are a special case of A-tight frames.

In particular, the generalized Pauli matrices [Eq. (15)]
form—up to normalization—an orthonormal basis of
LðHÞ, and are in fact an A-tight frame, which verifies

Eq. (20) with A ¼ B ¼ 2N and M ¼ 4N . According to
Proposition 22 in [35], a frame of a Hilbert space H with
bounds A; B that is orthogonally projected to a subspace
PH is a frame of PH with the same bounds A; B.
Therefore, we have as a corollary of Theorem 1 that the
set of covariant matrices Sμ1μ2…μN forms a 2N-tight frame
for LðHSÞ.
Tight frames are in a sense a generalization of ortho-

normal bases, as they allow an expansion over the
elements of the frames with the same formulas as for an
orthonormal basis; i.e., for all jψi ∈ H, we have jψi ¼
A−1PM

i¼1hϕijψijϕii (proposition 20 in [35]). This immedi-
ately entails the following result, which provides a gener-
alization of the Bloch sphere representation for spin-1=2,
Eq. (7), to any spin:
Theorem 2: For general spin-j, the 4N Hermitian

matrices Sμ1μ2…μN (with N ≡ 2j) provide an overcomplete
basis (more precisely, a 2N-tight frame) over which ρ can be
expanded, that is, any state can be expressed as

ρ ¼ 1

2N
xμ1μ2…μNSμ1μ2…μN ; ð21Þ

with coefficients

xμ1μ2…μN ¼ trðρSμ1μ2…μN Þ; ð22Þ
real and invariant under permutation of the indices.
Since S00…0 is the identity matrix, the condition trρ ¼ 1

for density matrices is equivalent to x00…0 ¼ 1. The tight
frame property allows one to write the Hilbert-Schmidt
scalar product of any two Hermitian operators ρ and ρ0 with
coordinates xμ1μ2…μN and x0μ1μ2…μN as the scalar product of
coordinates, more precisely

trðρρ0Þ ¼ 1

2N
xμ1μ2…μNx

0
μ1μ2…μN : ð23Þ

The condition trρ2 ≤ 1 that every state must satisfy
translates into

P
μ1
…
P

μN
x2μ1μ2…μN ≤ 2N . Note that from

Eq. (22) and the definition of Sμ1μ2…μN , the coordinates
xμ1μ2…μN appear as the coefficients of ð−1ÞNhΠðjÞðqÞi,
which is a multivariate polynomial in variables
q0; q1; q2; q3,

ð−1ÞNhΠðjÞðqÞi ¼ xμ1μ2…μNqμ1…qμN : ð24Þ
Due to the overcompleteness of the Sμ1μ2…μN the coor-

dinates xμ1μ2…μN in Eq. (21) are so far not unique. However,
for a given spin-j density matrix ρ, Eq. (22) is
the unique choice of coordinates xμ1μ2…μN such that these
coordinates are real numbers, invariant under permutation of
the indices, and verifying the condition gμ1μ2xμ1μ2…μN ¼ 0

(see Proposition 1 in the Supplemental Material [32]).
The generalized Bloch representation Eq. (21) shares

with the Bloch representation of a spin-1=2 several crucial
properties. First of all, using Eqs. (13) and (22), we see that
coordinates of a coherent state are simply given by the
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product of components of the 4-vector n ¼ ð1;nÞ, namely
xμ1μ2…μN ¼ nμ1nμ2…nμN . This generalizes the fact that the
Bloch vector representing a spin-1=2 state points in the
direction given by the angles defining the coherent state.
Secondly, under any SU(2) transformation, the Bloch
vector of a spin-1=2 simply rotates, i.e., transforms accord-
ing to xa → Rabxb, where R is a rotation matrix. Similarly,
for higher spins the tensor of coordinates of an arbitrary state
transforms according to xμ1…μN → Rμ1ν1…RμNνNxν1…νN ,
with Rab the 3 × 3 rotation matrix and R0μ ¼ Rμ0 ¼ δμ0.
This is a consequence of a more general covariance property
of the basismatricesSμ1μ2…μN . Indeed, theywere constructed
in such a way that for any element Λ of the Lorentz group,
with DðjÞ½Λ� the ð2jþ 1Þ-dimensional matrix associated
with Λ in the ðj; 0Þ representation,

DðjÞ½Λ�Sμ1μ2…μND
ðjÞ½Λ�† ¼ Λν1

μ1…ΛνN
μNSν1ν2…νN ð25Þ

in the covariant-contravariant notation of [27]. From
Eq. (22), this property translates to coordinates xμ1μ2…μN .
For rotations Rμν, the distinction between upper and lower
indices becomes irrelevant.
In addition to the shared advantages of a Bloch vector, our

generalized Bloch sphere representation [Eq. (21)] enjoys
additional convenient properties relevant for systems made
of many spin-1=2 or qubits. For instance, coordinates of
the spin-k reduced density matrix obtained by tracing the
spin-j matrix over j − k spins are simply given by

xμ1…μ2k ¼ xμ1…μ2k0…0 ð26Þ

(see Proposition 3 in the Supplemental Material [32]). Note
that in [36], a similar property was observed for the
coefficients in the expansion of ρ over generalized Pauli
matrices, and a formal Lorentz invariance of that expansion
was used very recently to generalize monogamy relations
of entanglement [37].
We now consider a few examples of states and give their

coordinates in our representation. Themaximallymixed state
ρ0 ¼ 1=ð2jþ 1Þ12jþ1 has coordinates xμ1μ2…μ2j given by

xμ1μ2…μ2jqμ1…qμ2j ¼
Xj

k¼0

ð2j
2kÞ

2kþ 1
q2ðj−kÞ0 jqj2k ð27Þ

(see Proposition 2 in the Supplemental Material [32]).
Another example is given by the Schrödinger cat states

jψ ðjÞ
cati ¼ ðjj;−ji þ jj; jiÞ= ffiffiffi

2
p

. By linearity of Eq. (21) and
of the trace, they have coordinates

xcatμ1…μN ¼ 1

2

�YN

i¼1

n½−1=2;−1=2�μi þ
YN

i¼1

n½1=2;1=2�μi

�

þ Re

�YN

i¼1

n½−1=2;1=2�μi

�
; ð28Þ

where n½�1=2;�1=2� ¼ ð1; 0; 0;�1Þ are the coordinates
of the coherent states j1

2
;� 1

2
ih1

2
;� 1

2
j and n½−1=2;1=2� ¼

0; 1;−i; 0 are the coordinates of the non-Hermitian
operator j1

2
;− 1

2
ih1

2
; 1
2
j.

While the complete characterization of the set of coor-
dinates for which ρ is positive is difficult in any representa-
tion [18,21,23], our representation [Eq. (21)] allows one to
solve this problem explicitely for j ¼ 1. The set of all spin-1
states is characterized by 8 real parameters. The trans-
formation of tensor xμν by rotation matrices under SU(2)
operations allows one to diagonalize the 3 × 3 block xab
(1 ≤ a; b ≤ 3), and Eq. (5) imposes

P
3
i¼1 μi ¼ 1 for the

eigenvalues μi, leaving five real parameters μ1; μ2,
x≡ ðx01; x02; x03Þ. In this case, x coincides with u in
the representation found in [38]. We therefore immediately
obtain that up to two special cases of measure zero the set
of all spin-1 states can be represented as a two–parameter
family of ellipsoids in the space of vectorsx (Eq. (21) in [38]
with u ¼ x and wab ¼ xab), thus providing a simple
geometrical picture of all spin-1 states.
As a direct application of our formalism, we give a simple

necessary and sufficient criterion for anticoherence of
spin states. Spin states are said to be anticoherent to order
t if hðn·JÞki is independent on the unit vector n for
any k with 0 ≤ k ≤ t [39]. Various characterizations have
been given [40]. Very recently, the case of pure but not
necessarily symmetric states was considered in [36,41]. The
definition of matrices Sμ1μ2…μN via (1) and (2) as a function
of J makes them most convenient for the characterization
of anticoherent states. One can show the following result:
Theorem 3: A spin-j state ρ, pure or mixed, is anti-

coherent to order t if and only if its spin-ðt=2Þ reduceddensity
matrix is the maximally mixed state ρ0 ¼ 1=ðtþ 1Þ1tþ1.
The proof (see Supplemental Material for more detail

[32]) relies on the calculation of hΠðjÞðqÞi for an anti-
coherent state, using the Eqs. (3) and (4) and identifying
terms up to order t with the expansion Eq. (27) of the
maximally mixed state. For instance, spin-j anticoherent
states to order 1 are characterized by hSμ00…0i ¼ δμ0
while anticoherent states to order 2 are characterized by
hSμν00…0i ¼ diagð1; 1=3; 1=3; 1=3Þ. From the characteriza-
tion of anticoherence given by Theorem 3, one can easily
obtain another characterization based on coefficients of the
multipolar expansion of the density matrix. For a spin-j
density operator ρ, the expansion reads

ρ ¼
X2j

k¼0

Xk

q¼−k
ρkqT

ðjÞ
kq ð29Þ

with ρkq ¼ trðρTðjÞ
kq

†Þ, where TðjÞ
kq are the irreducible tensor

operators [20]

TðjÞ
kq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþ 1

2jþ 1

s
Xj

m;m0¼−j

Cjm0
jm;kqjj; m0ihj;mj; ð30Þ
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and Cjm0
jm;kq are Clebsch-Gordan coefficients. The following

corollary of Theorem 3 can now be stated (see
Supplemental Material [32] for a proof).
Corollary 1: A spin-j state ρ is anticoherent to order t if

and only if ρkq ¼ 0;∀k ≤ t, ∀q∶ − k ≤ q ≤ k.
Note that in [31] the current characterizations were

obtained up to second order.
In summary, we have introduced a tensorial representa-

tion of spin states that leads to a natural generalization of
the Bloch sphere representation to arbitrary spin j, based
on Weinberg’s covariant matrices [27]. We have found a
convenient way of representing these matrices as projec-
tions of elements of the Pauli group into the symmetric
subspace of 2j spins-1=2, proving that they form a tight
frame. Our representation shares beautiful and essential
properties with the one for spin-1=2 (or qubit), and
provides additional insight for larger spins that we have
used for a novel characterization of anticoherent spin states.
We expect that the mathematical elegance of our repre-
sentation will enable new insights in different fields of
physics where spins are relevant.
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