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Peptide hydrogels have important applications as biomaterials and in nanotechnology, but utilization
often depends on their mechanical properties for which we currently have no predictive capability. Here we
use a peptide model to simulate the formation of percolating amyloid fibril networks and couple these to the
elastic network theory to determine their mechanical properties. We find that the time variation of network
length scales can be collapsed onto master curves by using a time scaling function that depends on the
peptide interaction anisotropy. The same scaling applies to network mechanics, revealing a nonmonotonic
dependence of the shear modulus with time. Our structure-function relationship between the peptide
building blocks, network morphology, and network mechanical properties can aid in the design of amyloid
fibril networks with tailored mechanical properties.
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Amyloid fibril networks form via two stages. First,
peptides or proteins assemble into amyloid fibrils that
share a common cross-β structure of intertwined layers of β
sheets extending in a direction parallel to the fibril axis
[1,2]. Fibril lengthening and thickening can be attributed
to strongly directional backbone hydrogen bonding and
weaker side-chain interactions, respectively. At later times,
the amyloid fibrils may entangle into a percolating network
[3] with a morphology characterized by multiple length
scales. Although amyloid fibrils are often associated with
devastating diseases such as Alzheimer’s and Parkinson’s
[4], amyloid networks are emerging as an important class of
material with applications in biosensing, nanoelectronics,
tissue engineering, and drug delivery [5–7]. However,
many of these applications depend strongly on the net-
work’s mechanical properties, for which we currently
have no predictive structure-function relation between
the bulk network stiffness and the properties of individual
proteins, without making assumptions regarding the
fibril morphology, cross-linker dynamics, and the local
deformation regime.
Theoretical and experimental studies characterizing the

mechanical properties of single, isolated amyloid fibrils
show that their elastic modulus and bending stiffness are
comparable to semiflexible filaments like actin, keratin,
collagen, and spider silk [8–11]. Recent rheology experi-
ments demonstrate that the shear modulus of amyloid fibril
networks can be altered by changes in the amino acid
sequence of the peptides [12,13] and the ionic strength of
the solution [14–17], indicating that design principles
might exist. The viscoelastic response of semiflexible
polymer networks can be immediately related to the
properties of individual filaments under the assumption
of affinity, i.e., that the microscopic deformation field
follows the applied macroscopic strain [18–22]. Relaxing

this assumption has thus far been possible only for the
zero-frequency response of athermal networks, formally
corresponding to the elastic plateau where the cross-links
can be regarded as fixed [23–25]. Importantly, all of the
mentioned theoretical approaches assume that the filaments
are identical, having the same bending rigidity, or, equiv-
alently, persistence length, at every location. This is a valid
assumption for filaments such as actin but not for amyloid
fibrils where the fibril thickness varies throughout the
network [26–28]. Furthermore, these previous studies con-
sidered procedurally defined, static networks; the time
evolution of the network morphology was not considered.
The objective of this Letter is to model the formation of
amyloid fibril networks to determine their mechanical
properties withoutmaking the aforementioned assumptions.
Our simulations use a peptide model similar to those

used in recent studies on amyloid fibril aggregation
[29–32], where the peptides in their virtually fully extended
(β-strand) conformation are described as hexagons posi-
tioned on a two-dimensional (2D) triangular lattice that
assemble into a cross-β structure characteristic of amyloids
[see Fig. S1(a) in Supplemental Material [33]]. The use of
a triangular lattice ensures that the network’s mechanical
properties are isotropic at large length scales [37], as well as
enabling the correct stacking of β sheets in fibrils [38] [see
Fig. S1(b) in Supplemental Material]. The hexagon has two
opposing strong bonding sides that allow the formation of
directional backbone hydrogen bonds, with the remaining
four weak bonding sides controlling fibril thickening. The
strong and weak bond energies are denoted ψ ¼ E=kBT
and ψh ¼ Eh=kBT, respectively, where kB is Boltzmann’s
constant and T temperature. The cross-β structure so
formed reproduces key aspects of the atomic structure of
fibrils formed by, e.g., the TTR peptide [2], and the
structure of fibrils formed by short segments of insulin
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observed in microcrystals [39]. Here we fix ψh ¼ 1 while
varying ψ , to study effect of the ratio ξ ¼ ψ=ψh of the
hydrogen bond energy to the side-chain bond energy.
A value of ξ ¼ 14 has been estimated for the Aβ40
peptide [31].
In order to model the formation of amyloid fibril net-

works, we perform Monte Carlo (MC) simulations similar
to those described in Ref. [29]. We perform displacement
moves of peptides to nearest neighbor lattice sites and
rotation moves so that the peptide can change its orienta-
tion. At the beginning of a simulation, N peptides are
randomly placed and oriented on a periodic 2D triangular
lattice of linear size L. In all our simulations, we set
L ¼ 256. As we use only physically plausible moves,
our model peptides exhibit the layer by layer growth
mechanism observed in computer simulations of the
self-assembly of short peptides into fibrillar aggregates
[40,41], and there is a correspondence between the number
of MC steps (MCSs) and real time as suggested in
Refs. [29,32,42]. A typical configuration is shown in
Fig. 1(a). The morphology of the fibril network obtained
is very similar to those observed experimentally for Aβ25-
35 [43] and short synthetic peptides (e.g., for GAV-9 [44]).
We use the Hoshen-Kopelman algorithm [45] to identify
individual amyloid fibrils, which enable us to characterize
them by their thickness i and length m [see Fig. S1(b) in
Supplemental Material]. The identification of fibrils also
allows us to obtain an elastic network representation of
the system as shown in Fig. 1(b). The cross-link positions
are taken to be the geometric centers of the overlap region
between different fibrils (see Fig. S2 in Supplemental
Material), with the distance between two connected
cross-links defined as the cross-link length l. Note that
not all fibrils identified in the system are part of the
percolating network [Fig. 1(a)].
The time evolution of the mean fibril thickness hii, the

mean cross-link distance hli, and the mean fibril length hmi
is shown in Fig. 2 for anisotropy ratios ξ ¼ 7, 10, and 14, at
a coverage θ ¼ N=L2 ¼ 0.5. As can be seen in the insets in
this figure, all lengths enter a coarsening regime where they
monotonically increase; i.e., the fibrils become thicker and
longer, and the cross-link positions become further apart
as the network evolves. Increasing the anisotropy ratio ξ
delays the onset of coarsening. A similar effect, where the
dynamics of the system is slowed down due to stronger
effective interparticle interactions, has been observed in
colloidal gels and glasses [46,47]. As demonstrated in
Fig. 2, the time dependence of each morphological quantity
of the network obtained for different anisotropy ratios can
be collapsed onto a single master curve by rescaling the
time as tξ ¼ te−Δξ, where Δξ ¼ ξ − ξ0 with ξ0 an arbitrary
origin (here we take ξ0 ¼ 7). It is not only the mean of the
morphological quantities that collapse, but also their dis-
tribution functions as shown in Fig. S3 in Supplemental
Material. The coarsening exponents αi ¼ 0.16� 0.02,

αl ¼ 0.18� 0.02, and αm ¼ 0.17� 0.02 of the morpho-
logical quantities can be obtained by fitting the data points
for times lnðtξÞ > 6 to hii ∼ tαiξ , hli ∼ tαlξ , and hmξi ∼ tαmξ ,
respectively. The mean fibril length was additionally scaled
by an arbitrary function wðξÞ [inset in Fig. 2(c)], giving
hmξi ¼ hmiewðξÞ, but this does not affect the scaling with
time. The measured exponents are consistent with a
common value ≈0.17, demonstrating that all network
lengths obey the same scaling during coarsening. Note that,
if one identifies the fibril area s ≈ i ×m as a domain size, the
growth law s ∼ tαiþαm

ξ is consistent with the 1=3 exponent
derived analytically for the isotropic case, i.e., the 2D spin-
exchange Ising model [48,49], despite the fibrils in our
networks forming anisotropic shapes.
We now turn our attention to understanding how the

structural changes in the network affect its mechanical
properties. Starting from the network representation as in

FIG. 1 (color online). (a) Amyloid fibril network obtained for
ξ ¼ 10 with N ¼ 31130 peptides on a 2D lattice with linear size
L ¼ 256 at time t ¼ 105 MC steps. Fibrils that are part of the
percolation network are shown with a black border. The three
possible orientations of the fibril on the triangular lattice are
distinguished by three different colors/shades. (b) Corresponding
elastic network representation where fibril cross-links are repre-
sented by circles and the fibrils between cross-links by line
segments.
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Fig. 1(b), one can mimic an applied strain γ by imposing
horizontal displacements to the boundary cross-links as
shown in Fig. S4 in Supplemental Material. The internal
cross-links then relax to new positions, causing an increase
ΔEelastic in the total elastic energy of the network. For the
linear response (γ ≪ 1), one can use ΔEelastic to extract the
shear modulus [25,37]:

G ¼ 2ΔEelastic

γ2A
; ð1Þ

where A is the total system area. The shear modulus G thus
depends on the displacement vectors ~uν of all cross-links,
which contribute to ΔEelastic as detailed in Supplemental
Material. These displacement vectors ~uν are obtained by
performing high-dimensional numerical optimization to
minimizeΔEelastic with respect to each displacement degree
of freedom [23]. For all measurements we consider
γ ¼ 0.02 to avoid nonlinear responses due to high strain
values. Our method generalizes a previous lattice-based
model [25] by permitting variations in fibril thickness and
cross-link distances (see Supplemental Material).
In Fig. 3, we present results for the time-dependent

behavior of the normalized shear modulus G=Ef, where Ef

is the Young’s modulus of a fibril. It is evident that small
changes in both the anisotropy ξ and the coverage θ lead to
large changes in G spanning orders of magnitude, with an
overall trend for higher values of G=Ef with increasing θ.
Moreover, the variation is nonmonotonic in time, in
contrast to the monotonic coarsening of the morphological
quantities discussed above, and there are time periods when
the thinner fibrils (formed for ξ ¼ 14) yield stronger
networks than thicker fibrils. Most experiments on the
formation of amyloid fibril networks are performed on a
time scale of tens of minutes, where the shear modulus
displays either an increasing or a constant behavior
[14,16,50,51]. However, one set of longer experiments

for β-lactoglobulin gels suggested a slight decrease in G
after hours [52], and atomic force microscopy imaging has
demonstrated significant changes to network morphology
over a time scale of days [43,53], for which mechanical
properties are not usually measured. This suggests that
extending the data acquisition window may reveal a similar
nonmonotonicity to Fig. 3. Although we simulate a 2D
network, a rough estimate for the shear modulus Gexp as
measured in 3D experiments can be made by scaling our
results by Gaff

3D=G
aff
2D, where Gaff

2D and Gaff
3D are the affine

predictions in 2D and 3D, respectively. By employing
standard results [23,25], Gexp ¼ ð8Ef=15lcÞðG=EfÞ for
tightly entangled networks, where lc is a length scale
comparable to the cross-link distance hli. Taking the
Young’s modulus of a single fibril to be Ef ∼ 109 Pa [10]
and lc ∼ 10 nm, we obtain values for Gexp spanning

〈
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〈
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〈
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〈
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FIG. 2 (color online). (a) Scaled and unscaled (inset) time dependence of the mean thickness hii. (b) Scaled and unscaled (inset) time
dependence of mean cross-link length hli. (c) Scaled time dependence of mean fibril length hmξi ¼ hmiewðξÞ, where the values of the
function wðξÞ used are shown in the inset. The data are obtained from configurations for a coverage θ ¼ 0.5 at times t ¼ 4n MCSs, with
n ¼ 1; 2;…; 12. Averages were obtained from 25 independent simulations. Error bars are smaller than the symbols. Dashed lines are fits
for lnðtξÞ > 6 as discussed in the text.

FIG. 3 (color online). Time dependence of the normalized shear
modulusG=Ef obtained for networks with coverages (a) θ ¼ 0.5,
(b) 0.525, and (c) 0.55. Averages and errors bars were obtained
from 25 independent simulations. Additional points at times
t ¼ 10n (n ∈ N) are also included.
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102–104 Pa, which is the same range observed for
β-lactoglobulin gels [52] and other peptide-based gels
(e.g., Refs. [17,51]). In addition, the behavior of G=Ef

resembles that of weakly interacting colloidal aggregates
which measurably weaken prior to visual collapse [54].
We hypothesize that this weakening shares a common
mechanism to that observed in our results, although the
final collapse under gravity (with its associated step change
in the bulk symmetry) presumably has a different origin.
Insight into the mechanism underlying network weak-

ening can be gained by measuring mechanical and mor-
phological quantities simultaneously. We evaluated the
shear modulus normalized to the affine prediction Gaff
[computed from Eq. (1) for identical networks with affine
displacements ~uaffν ] as in previous works [23,25] and
monitored the mean network connectivity z given by the
average value of the coordination numbers, zν, from all
internal cross-links. As depicted in Fig. 4(a), we found that
G=Gaff for different anisotropies ξ can be collapsed onto a
series of master curves, with one such curve for each
coverage θ. The decreasing region ofG=Gaff coincides with
the onset of a decrease in z as indicated in the diagram, and
indeed snapshots reveal a reduction in network connectivity
over these times (see Fig. S5 in Supplemental Material).
Thus, the mechanical weakening of the network is due to its
increased sparsity. As with the fibril length hmξi, it was also

necessary to scale the magnitude of G=Gaff by ξ-dependent
factors fðξÞ and gðξÞ as shown in Figs. 4(c) and 4(d), but
this does not alter the times tξ corresponding to the local
minimum and maximum in G=Gaff . These factors mean
that, at fixed rescaled times tξ, higher ξ yields higher
G=Gaff and correspondingly higher values of z. For all
values of θ and ξ, the values of z are located below the
central force threshold (zCF ¼ 4 for 2D systems).
Moreover, we findG=Gaff ≪ 1 for our networks, as evident
in Fig. 4(a). Thus all of our networks correspond to a
nonaffine deformation regime, and consistent with prior
observations [25] most of the elastic energy takes the form
of fibril bending, with ΔEbending=ΔEelastic fluctuating
around 0.9 (see Fig. S6 in Supplemental Material).
Identifying universal behaviors, such as in time-cure

superposition curves [52,55], can accelerate the develop-
ment of novel materials by reducing the number of
independent parameters that need to be assayed. Our
simulations have revealed a simple time scaling function
that depends on the anisotropy ξ of interaction between
peptides, which collapses data for both morphological
and mechanical quantities. The proposed scaling function
should benefit experimentalists in the design of amyloid-
based materials, since it permits the extrapolation of
the time-dependent mechanical response of the amyloid
fibril networks from the behavior of peptide systems with
known interactions. Our findings indicate that features like
the nonzero shear modulus for connectivities lower than
zCF and the nonaffine response, which are commonly
overlooked in the modeling of hydrogels [21,22], should
be included in further descriptions of amyloid fibril net-
works. Finally, we note that our hybrid approach to
measure the elastic moduli of a fiber network as it forms
and grows represents a new direction for fiber network
modeling that can be extended to other fibrous and porous
materials in general, including inorganic materials such
as colloidal gels [46].

L. G. R. acknowledges support from the Brazilian
agency Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) (Grant No. 245412/
2012-3). D. A. H. acknowledges support from the
Biomedical Health Research Centre, University of
Leeds, United Kingdom.

[1] J. Adamcik and R. Mezzenga, Macromolecules 45, 1137
(2012).

[2] A.W. P. Fitzpatrick, G. T. Debelouchina, M. J. Bayro,
D. K. Claire, M. A. Caporini, W. S. Bajaj, C. P. Jaroniec,
L. Wang, V. Ladizhansky, S. A. Müller, C. E. MacPhee,
C. A. Wauldby, H. R. Mott, A. D. Simone, T. P. J. Knowles,
H. R. Saibil, M. Vendruscolo, E. V. Orlova, R. G. Griffin,
and C. M. Dobson, Proc. Natl. Acad. Sci. U.S.A. 110, 5468
(2013).

FIG. 4 (color online). Scaling behavior of (a) shear modulus
ratio G=Gaff and (b) mean network connectivity z against the
rescaled time tξ. Data collapse is obtained separately for each
coverage θ. Vertical gray bars denote regions near the maximum
and minimum of G=Ef . (c) and (d) show the values of the scaling
functions gðξÞ and fðξÞ for the shear modulus ratio and
connectivity, respectively.

PRL 114, 078102 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 FEBRUARY 2015

078102-4

http://dx.doi.org/10.1021/ma202157h
http://dx.doi.org/10.1021/ma202157h
http://dx.doi.org/10.1073/pnas.1219476110
http://dx.doi.org/10.1073/pnas.1219476110


[3] M. Schleegert, C. C. vanderAkker, T. Deckert-Gaudig,
V. Deckert, K. P. Velikov, G. Koenderink, and M. Bonn,
Polymer 54, 2473 (2013).

[4] F. Chiti and C. M. Dobson, Annu. Rev. Biochem. 75, 333
(2006).

[5] I. Cherny and E. Gazit, Angew. Chem., Int. Ed. 47, 4062
(2008).

[6] C. J. Bowerman and B. L. Nilsson, Biopolymers 98, 169
(2012).

[7] N. P. Reynolds, M. Charnley, R. Mezzenga, and P. G.
Hartley, Biomacromolecules 15, 599 (2014).

[8] J. F. Smith, T. P. J. Knowles, C. M. Dobson, C. E. MacPhee,
and M. Welland, Proc. Natl. Acad. Sci. U.S.A. 103, 15806
(2006).

[9] T. P. J. Knowles and M. J. Buehler, Nat. Nanotechnol. 6, 469
(2011).

[10] L. R. Volpatti and T. P. J. Knowles, J. Polym. Sci. B 52, 281
(2014).

[11] S. Keten, Z. Xu, B. Ihle, and M. J. Buehler, Nat. Mater. 9,
359 (2010).

[12] C. Tang, R. Ulijn, and A. Saiani, Langmuir 27, 14438
(2011).

[13] J. Adler, H. A. Scheidt, M. Krüger, L. Thomas, and D.
Huster, Phys. Chem. Chem. Phys. 16, 7461 (2014).

[14] B. B. Ozbas, K. K. Rajagopal, J. P. J. Schneider, and D. J.
Pochan, Macromolecules 37, 7331 (2004).

[15] J. M. Riley, A. Aggeli, R. J. Koopmans, and M. J.
McPherson, Biotechnol. Bioeng. 103, 241 (2009).

[16] S. Bolisetty, L. Harnau, J.-M. Jung, and R. Mezzenga,
Biomacromolecules 13, 3241 (2012).

[17] S. Boothroyd, A. F. Miller, and A. Saiani, Faraday Discuss.
166, 195 (2013).

[18] R. Pritchard, Y. Y. S. Huang, and E. M. Terentjev, Soft
Matter 10, 1864 (2014).

[19] C. P. Broedersz, M. Depken, N. Y. Yao, M. R. Pollak, D. A.
Weitz, and F. C. MacKintosh, Phys. Rev. Lett. 105, 238101
(2010).

[20] L. Wolff, P. Fernandez, and K. Kroy, New J. Phys. 12,
053024 (2010).

[21] A. Basu, Q. Wen, X. Mao, T. C. Lubensky, P. A. Janmey,
and A. G. Yodh, Macromolecules 44, 1671 (2011).

[22] Q. Wen, A. Basu, P. A. Janmey, and A. G. Yodhb, Soft
Matter 8, 8039 (2012).

[23] D. A. Head, A. Levine, and F. MacKintosh, Phys. Rev. Lett.
91, 108102 (2003); Phys. Rev. E 68, 061907 (2003).

[24] C. Heussinger and E. Frey, Phys. Rev. Lett. 97, 105501
(2006).

[25] C. P. Broedersz, X. Mao, T. C. Lubensky, and F. C.
MacKintosh, Nat. Phys. 7, 983 (2011).

[26] M. Kolsofszki, A. Karsai, K. Soós, B. Penke, and M. S. Z.
Kellermayer, Prog. Colloid Polym. Sci. 135, 169
(2008).

[27] W. F. Xue, S. W. Homans, and S. E. Radford, Protein Eng.,
Des. Sel. 22, 489 (2009).

[28] R. J. Morris, K. Eden, R. Yarwood, L. Jourdain, R. J. Allen,
and C. E. MacPhee, Nat. Commun. 4, 1891 (2013).

[29] J. Zhang and M. Muthukumar, J. Chem. Phys. 130, 035102
(2009).

[30] R. Cabriolu, D. Kashchiev, and S. Auer, J. Chem. Phys. 137,
204903 (2012).

[31] D. Kashchiev, R. Cabriolu, and S. Auer, J. Am. Chem. Soc.
135, 1531 (2013).

[32] A. Irback, S. Jonsson, N. Linnemann, B. Linse, and
S. Wallin, Phys. Rev. Lett. 110, 058101 (2013).

[33] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.114.078102 for de-
tailed methodology, further snapshots and additional results,
which includes Refs. [34–36].

[34] M. Bathe, C. Heussinger, M. M. A. E. Claessens, A. R.
Bausch, and E. Frey, Biophys. J. 94, 2955 (2008).

[35] P. Müller and J. Kierfeld, Phys. Rev. Lett. 112, 094303
(2014).

[36] T. Boatwright, A. J. Levine, and M. Dennin, Soft Matter 7,
7851 (2011).

[37] L. D. Landau and E. M. Lifshitz, Theory of Elasticity
(Butterworth-Heinemann, Oxford, 1986).

[38] H. D. Nguyen and C. K. Hall, J. Biol. Chem. 280, 9074
(2005).

[39] M. R. Sawaya, S. Sambashivan, R. Nelson, M. I. Ivanova,
S. A. Sievers, M. I. Apostol, M. J. Thompson, M. Balbirnie,
J. J. W. Wiltzius, H. T. McFarlane, A. Madsen, C. Riekel,
and D. Eisenberg, Nature (London) 447, 453 (2007).

[40] S.AuerandD.Kashchiev,Phys.Rev.Lett.104, 168105(2010).
[41] M. Cheon, I. Chang, and C. K. Hall, Biophys. J. 101, 2493

(2011).
[42] B. Linse and S. Linse, Mol. Biosyst. 7, 2296 (2011).
[43] A. Karsai, L. Grama, U. Murvai, K. Soos, B. Penke, and

M. S. Z. Hellermayer, Nanotechnology 18, 345102 (2007).
[44] H. Li, F. Zhang, Y. Zhang, M. Ye, B. Zhou, Y.-Z. Tang,

H.-J. Yang, M.-Y. Xie, S.-F. Chen, J.-H. He, H.-P. Fang, and
J. Hu, J. Phys. Chem. B 113, 8795 (2009).

[45] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976).
[46] P. J. Lu and D. A. Weitz, Annu. Rev. Condens. Matter Phys.

4, 217 (2013).
[47] G. L. Hunter and E. R. Weeks, Rep. Prog. Phys. 75, 066501

(2012).
[48] J. G. Amar, F. E. Sullivan, and R. D. Mountain, Phys. Rev. B

37, 196 (1988).
[49] S. J. Mitchell and D. P. Landau, Phys. Rev. Lett. 97, 025701

(2006).
[50] A. Aggeli, M. Bell, N. Boden, J. N. Keen, P. F. Knowles,

T. C. B. McLeish, M. Pitkeath, and S. E. Radford, Nature
(London) 386, 259 (1997).

[51] M. A. Greenfield, J. R. Hoffman, M. O. de la Cruz, and S. I.
Stupp, Langmuir 26, 3641 (2010).

[52] W. S. Gosal, A. H. Clark, and S. B. Ross-Murphy, Bioma-
cromolecules 5, 2420 (2004).

[53] I. Usov, J. Adamcik, and R. Mezzenga, Faraday Discuss.
166, 151 (2013).

[54] S. W. Kamp and M. L. Kilfoil, Soft Matter 5, 2438 (2009).
[55] A. M. Corrigan and A. M. Donald, Eur. Phys. J. E 28, 457

(2009); Langmuir 25, 8599 (2009).

PRL 114, 078102 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 FEBRUARY 2015

078102-5

http://dx.doi.org/10.1016/j.polymer.2013.02.029
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
http://dx.doi.org/10.1002/anie.200703133
http://dx.doi.org/10.1002/anie.200703133
http://dx.doi.org/10.1002/bip.22058
http://dx.doi.org/10.1002/bip.22058
http://dx.doi.org/10.1021/bm401646x
http://dx.doi.org/10.1073/pnas.0604035103
http://dx.doi.org/10.1073/pnas.0604035103
http://dx.doi.org/10.1038/nnano.2011.102
http://dx.doi.org/10.1038/nnano.2011.102
http://dx.doi.org/10.1002/polb.23428
http://dx.doi.org/10.1002/polb.23428
http://dx.doi.org/10.1038/nmat2704
http://dx.doi.org/10.1038/nmat2704
http://dx.doi.org/10.1021/la202113j
http://dx.doi.org/10.1021/la202113j
http://dx.doi.org/10.1039/c3cp54501f
http://dx.doi.org/10.1021/ma0491762
http://dx.doi.org/10.1002/bit.22274
http://dx.doi.org/10.1021/bm301005w
http://dx.doi.org/10.1039/c3fd00097d
http://dx.doi.org/10.1039/c3fd00097d
http://dx.doi.org/10.1039/c3sm52769g
http://dx.doi.org/10.1039/c3sm52769g
http://dx.doi.org/10.1103/PhysRevLett.105.238101
http://dx.doi.org/10.1103/PhysRevLett.105.238101
http://dx.doi.org/10.1088/1367-2630/12/5/053024
http://dx.doi.org/10.1088/1367-2630/12/5/053024
http://dx.doi.org/10.1021/ma1026803
http://dx.doi.org/10.1039/c2sm25364j
http://dx.doi.org/10.1039/c2sm25364j
http://dx.doi.org/10.1103/PhysRevLett.91.108102
http://dx.doi.org/10.1103/PhysRevLett.91.108102
http://dx.doi.org/10.1103/PhysRevE.68.061907
http://dx.doi.org/10.1103/PhysRevLett.97.105501
http://dx.doi.org/10.1103/PhysRevLett.97.105501
http://dx.doi.org/10.1038/nphys2127
http://dx.doi.org/10.1007/2882_2008_109
http://dx.doi.org/10.1007/2882_2008_109
http://dx.doi.org/10.1093/protein/gzp026
http://dx.doi.org/10.1093/protein/gzp026
http://dx.doi.org/10.1038/ncomms2909
http://dx.doi.org/10.1063/1.3050295
http://dx.doi.org/10.1063/1.3050295
http://dx.doi.org/10.1063/1.4767531
http://dx.doi.org/10.1063/1.4767531
http://dx.doi.org/10.1021/ja311228d
http://dx.doi.org/10.1021/ja311228d
http://dx.doi.org/10.1103/PhysRevLett.110.058101
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://link.aps.org/supplemental/10.1103/PhysRevLett.114.078102
http://dx.doi.org/10.1529/biophysj.107.119743
http://dx.doi.org/10.1103/PhysRevLett.112.094303
http://dx.doi.org/10.1103/PhysRevLett.112.094303
http://dx.doi.org/10.1039/c1sm05421j
http://dx.doi.org/10.1039/c1sm05421j
http://dx.doi.org/10.1074/jbc.M407338200
http://dx.doi.org/10.1074/jbc.M407338200
http://dx.doi.org/10.1038/nature05695
http://dx.doi.org/10.1103/PhysRevLett.104.168105
http://dx.doi.org/10.1016/j.bpj.2011.08.042
http://dx.doi.org/10.1016/j.bpj.2011.08.042
http://dx.doi.org/10.1039/c0mb00321b
http://dx.doi.org/10.1088/0957-4484/18/34/345102
http://dx.doi.org/10.1021/jp903446g
http://dx.doi.org/10.1103/PhysRevB.14.3438
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184213
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184213
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1103/PhysRevB.37.196
http://dx.doi.org/10.1103/PhysRevB.37.196
http://dx.doi.org/10.1103/PhysRevLett.97.025701
http://dx.doi.org/10.1103/PhysRevLett.97.025701
http://dx.doi.org/10.1038/386259a0
http://dx.doi.org/10.1038/386259a0
http://dx.doi.org/10.1021/la9030969
http://dx.doi.org/10.1021/bm049660c
http://dx.doi.org/10.1021/bm049660c
http://dx.doi.org/10.1039/c3fd00083d
http://dx.doi.org/10.1039/c3fd00083d
http://dx.doi.org/10.1039/b814975e
http://dx.doi.org/10.1140/epje/i2008-10439-7
http://dx.doi.org/10.1140/epje/i2008-10439-7
http://dx.doi.org/10.1021/la804208q

