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We show that the transport and thermodynamic properties of a singly connected disordered conductor
exhibit quantum Aharonov-Bohm oscillations as a function of the total magnetic flux through the sample.
The oscillations are associated with the interference contribution from a special class of electron trajectories
confined to the surface of the sample.
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Introduction.—Quantum coherence of electron motion
dramatically affects low temperature phenomena in disor-
dered conductors. Anderson localization [1] is the most
profound of them, but even in the metallic regime, where
quantum effects are relatively small, they give rise to a
number of dramatic effects due to their extreme sensitivity
to magnetic field and inelastic processes [2,3]. Celebrated
examples are universal conductance fluctuations (UCF)
[4,5], magnetoresistance in weak magnetic fields [6], and
Aharonov-Bohm (AB) oscillations [7] in thin mesoscopic
cylinders and rings [8,9]. Here we show that quantum
interference corrections give rise to a novel type of AB
oscillations that exist in finite singly connected conductors.
They originate from the boundary of the sample and are
associated with a special type of diffusive trajectories that
graze the boundary.
In the metallic regime quantum corrections may be

understood semiclassically. One can start with the classical
motion of electrons with momentum p, where jpj≃ pF
(pF is the Fermi momentum) along diffusive trajectories
(“paths”) consisting of segments of straight lines broken by
impurities, [see Fig. 1(a)]. The phase θl of the quantum
amplitude for the lth path is

θlðBÞ ¼
pFLl

ℏ
þ e
cℏ

Z
l
dr ·A: ð1Þ

Here, Ll is the path length and the second term is the
Aharonov-Bohm phase due to the magnetic field,
B ¼ ∇ ×A. Observables may be expressed in terms of
the sum of quantum amplitudes taken over all classical
paths connecting two points (r1 and r2 in Fig. 1), i.e.,���X

l

ffiffiffiffiffiffi
Wl

p
eiθl
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l
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
WlWl0

p
eiðθl−θl0 Þ;

ð2Þ

whereWl is the classical probability of path l. The first sum
on the right-hand side of Eq. (2) corresponds to the classical

probability of propagation from r1 to r2. The second gives
the quantum correction that arises from interference of
amplitudes of different trajectories, and is in general random
due to rapidly oscillating phase factors. Consideration of
leading quantum corrections amounts to statistical analysis
of these random terms. For example, the weak localization
correction is determined by its average whereas UCF are
determined by its second cumulant.
One of the main objects governing the statistics of

quantum corrections [2] is the Cooperon. It describes
interference of pairs of geometrically identical paths
traversed in opposite directions,

Cðr1; r2;BÞ ¼
X
l

Wlei½θlðBÞ−θlð−BÞ�: ð3Þ

In the absence of magnetic field the phase factors above are
equal to unity, and the Cooperon is given by the probability
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FIG. 1 (color online). (a) Diffusive paths contributing to the
interference corrections. (b) Sketch of the directed area swept by
a path. The blue and red regions give opposite in sign contri-
butions. (c) Typical path leading to the Gaussian decay of the
Cooperon in the bulk. (d) Typical path near the surface. (e) Sur-
face paths leading to AB oscillations. Notice that the straight
segment structure of diffusive paths in (a),(b) is not shown in
panels (c)–(e).
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of classical diffusion between points r1, r2. In a finite
magnetic field the phase factors become random due
to accumulation of Aharonov-Bohm flux through
oriented areas swept by diffusive paths [see Fig. 1(b)]. It
is well known [2] that this randomness suppresses the
Cooperon at distances larger than the magnetic length,
lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

, so that for an infinite system Cðr1; r2;BÞ≃
exp ½2ie=ðℏcÞ R A · dr − αbðr1 − r2Þ2=l2B�, where αb is a
constant of order unity and the integral is taken along the
chord connecting r1 and r2.
As will be shown below, directed areas swept by

electron trajectories near the boundary have smaller ran-
domness than those in the bulk. As a result, near the
boundary the Cooperon has a very different coordinate
dependence from that in the bulk; Cðr1; r2;BÞ≃
exp ½Rs ð2ie=ðℏcÞA · dr − αsjdrj=lBÞ�. Here αs is a constant
of order unity, and the integration is taken along the
boundary. In contrast to the Gaussian falloff of the bulk
contribution with distance r12 ≡ jr1 − r2j, the surface
contribution falls off exponentially and thus becomes
dominant at large distances. Another important distinction
is that the Aharonov-Bohm phase of the surface contribu-
tion is determined by the geometry of the sample boundary
rather than the shortest line connecting the end points.
Furthermore, the requirement that on completing the
perimeter of the sample; see Fig. 1(e), the Cooperon must
remain unchanged means that the surface contribution
Cðr; r;BÞ is, in fact, an oscillating function of the
magnetic flux through the sample, Φ, Cðr; r;BÞ≃
� � � þ exp ð−αsp=lBÞ cos ð2πΦ=Φ0Þ, where Φ0 ¼ 2πℏc=2e
is the superconducting flux quantum and p is the length of
the perimeter (for a three-dimensional system p and Φ are,
respectively, the perimeter of the extremal cross section
perpendicular to the magnetic field, and the flux through it).
This means that the quantum interference corrections are
expected to oscillate (rather than simply decay) with the
magnetic field even in singly connected geometries [10], in
a way similar to the effects in multiple connected geom-
etries [7,8,11].
Qualitative discussion.—To elucidate the difference

between the surface and the bulk contributions to the
interference corrections we now discuss the statistics of
diffusive trajectories in more detail. Let us label each
diffusive trajectory by rðτÞ, 0 ≤ τ ≤ t, where t is the
duration of the diffusive motion. Then summation over
the paths l can be rewritten as

X
l

Wl →
Z

dtPðtÞ; PðtÞ≃X
rðτÞ

exp

�
−
R
t
0 dτ_r

2

4D

�
;

where D is the diffusion constant, and the summation (path
integration) is performed over all trajectories rðτÞ in which
the particle travels from r1 to r2 in time t. In this notation
the bulk contribution to the Cooperon (3) acquires the form

Cðr1;r2;BÞ¼ eiθ
AB
r1r2

Z
dtPðtÞ

�
exp

�
2iSfrðtÞg

l2B

��
; ð4Þ

where the Aharonov-Bohm phase θABr1r2¼ði2e=ℏcÞR r2
r1
dr·A

is calculated along the straight line connecting points r1 and
r2, SfrðtÞg is the directed area of the surface confined by
the path rðtÞ and the straight line connecting points r1, r2,
see Fig. 1, and the averaging means

h…i ¼ 1

PðtÞ
X
rðτÞ

… exp

�
−

1

4D

Z
t

0

dτ_r2
�
: ð5Þ

Some conclusions about the statistical properties of
S can easily be drawn on symmetry and dimensionality
grounds. Consider, for example, a typical diffusive path
shown in Fig. 1(c). Its probability can be estimated as
exp ½−ðr212 þ ðΔyÞ2Þ=ð4DtÞ� while the directed area swept
by it is S≃ 1=2jr12jΔy. Then, the averaged phase factor is
given by

�
exp

�
2iS
l2B

��
∝
Z

∞

−∞
dΔy exp

�
ir12Δy
l2B

�
exp

�
−
ðΔyÞ2
4Dt

�
∝ exp ð−Dtr212=l

4
BÞ ð6Þ

(the prefactor is easily found from the lB → ∞ limit).
Substituting this estimate into Eq. (4), we obtain

Cðr1; r2;BÞ≃
Z

dt exp ½−r212=ð4DtÞ� exp ð−Dtr212=l
4
BÞ:

The exponent in the integrand has a minimum at Dt≃ l2B
and at jr12j ≫ lB can be evaluated in the saddle point
approximation with the result that in the interior of the
system the Cooperon decays rapidly at large distances,

jCðr1; r2;BÞj ∝ exp ð−r212=l2BÞ: ð7Þ

This rapid spatial decay of the bulk contribution arises from
an unconstrained summation of a large number of con-
tributions in (6), which have random signs and nearly
cancel each other. The presence of a nearby boundary
imposes a sharp geometrical constraint on the allowed
paths, which enhances the sum of rapidly oscillating
contributions of different paths. For instance, consider
the same trajectory as in Fig. 1(c), but for both points r1
and r2 near the boundary. For such trajectories the
geometric constraint imposed by the boundary amounts
to confining the integration variable y to the interval
y ∈ ½0;∞Þ resulting in a contribution of the form

����
Z

∞

0

dy exp

�
ir12Δy
l2B

�
exp

�
−
ðΔyÞ2
4Dt

�����≃ l2b
jr12j

ffiffiffiffiffiffi
Dt

p :
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Although this contribution decays merely as a power
law at r12 ≫ lB, there are other oscillatory contributions,
which together lead to an exponential decay. Consider a
trajectory having the form of the “skipping orbit” shown in
Fig. 1(d), which includes n reflections from the boundary.
Its probability is exp(−r212=ð4DtÞ−n

P
n
j¼1ðΔyjÞ2=ð4DtÞ),

while the directed area swept by it is S≃
1=ð2nÞjr12j

P
n
j¼1Δyj. The estimate (6), thus, immediately

changes to

�
exp

�
2iS
l2B

��
∝
Yn
j¼1

Z
∞

0

dΔyj exp
�
ir12Δyj
nl2B

− n
ðΔyjÞ2
4Dt

�
:

Estimating n from the requirement that the contribution
from both terms in the exponent be of the same order for the
relevant value of Δyj, we find the optimal value of n to be
given by n3� ≃ ðtDr212Þ=l4B. The final value of the averaged
phase factor becomes

�
exp

�
2iS
l2B

��
¼ ðe−αsÞn� ¼ exp

�
−αs

�
tDr212
l4B

�
1=3

	
;

where αs is a coefficient of order unity and Re αs > 0.
Substituting this estimate into Eq. (4), we find

Cð…Þ≃
Z

dt exp ½−r212=ð4DtÞ� exp ½−αsðtDr212=l
4
BÞ1=3�:

The exponent in the integrand has a minimum at
Dt≃ lBr12 and at jr12j ≫ lB we obtain the main qualitative
result,

jCsðr1; r2;BÞj ∝ exp ð−αsjr12j=lBÞ; ð8Þ
which decays significantly more slowly than in the bulk;
see Eq. (7). A similar enhancement of electron tunneling
due to the surface effects was pointed out in Ref. [12] in the
context of hopping transport in strong magnetic fields. The
similarity is only formal, as we consider here the case of a
classically weak magnetic field which does not bend the
diffusive trajectories of electrons and enters only through
the accumulation of the Aharonov-Bohm phase.
Quantitative analysis of the Cooperon.—The qualitative

picture above is borne out by quantitative analysis. The
Cooperon represents the resolvent of the modified diffusion
equation [2],

ℏD½−i∇ − ð2e=ℏcÞAðrÞ�2χβðrÞ ¼ ϵβχβðrÞ; ð9aÞ

n · ½−i∇ − ð2e=ℏcÞAðrÞ�χβðrÞjr∈B ¼ 0: ð9bÞ

In the boundary condition (9b) n is a vector normal to the
boundary B. The vector potential A describes the effect of
the Aharonov-Bohm phase accumulation and the boundary

condition corresponds to the absence of current through the
boundary. The eigenvalues ϵβ are gauge invariant and in
many cases (see below) the physical effects are determined
only by them. The Cooperon (3) can be easily expressed
as Cðr1; r2Þ ¼

P
βχβðr1Þχ�βðr2Þ=ϵβ.

To investigate the surface contribution to Aharonov-
Bohm oscillations in a singly connected sample it is
sufficient to use the simplest disk geometry shown on
Fig. 1(e). Equations (9) are easily solved in the polar
coordinates r, φ in the symmetric gauge Ar ¼ 0,
Aφ ¼ −ðrB=2Þ. The eigenstates in this case are labeled
by two integers β → ðn;mÞ, where m is the angular
momentum, and n ≥ 0 is the radial number. The wave
functions are of the form χ ¼ eimφfnmðr=lBÞ. The eigen-
value ϵnm ¼ λnmℏD=l2B, and the radial wave function fnmðρÞ
(ρ ¼ r=lB) obey the dimensionless differential equation�

−
d2

dρ2
−
1

ρ

d
dρ

−2mþm2

ρ2
þρ2

	
fnmðρÞ¼ λnmfnmðρÞ: ð10Þ

The Neumann boundary condition ðdfnm=dρÞjρ¼R=lB ¼ 0

makes this problem different from that for an electron in a
magnetic field. The solution of Eq. (10) that is regular at
ρ ¼ 0 may be expressed in terms of the confluent hyper-
geometric function Φðα; β; zÞ,

fnmðρÞ ¼ e−ρ
2=2ρjmjΦ

�jmj þ 1 −m
2

−
λnm
4
; jmj þ 1; ρ2

�
:

The eigenvalues λnm are found from the boundary condition
at ρ ¼ R=lB. For small angular momenta, m ≪ R=lB, they
correspond to degenerate Landau levels, λnm ¼ 4nþ 2.
Near the boundary they show significant deviations. For
the two lowest Landau levels λnm are plotted in Fig. 2
for Φ=Φ0 ¼ 25.
As shown below, the magnitude of the Aharonov-Bohm

oscillations is governed by the spectrum in the vicinity of
the lower boundary, λ� ¼ minmλ0m ≈ 1.18, which is

4 3 2 1 1 2

2

4

6

8

FIG. 2 (color online). Cooperon eigenvalues calculated for a
disk geometry. The drop near m ¼ m� corresponds to the
interference of diffusion trajectories near the boundary shown
in Fig. 1.
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achieved at m ¼ m� ≈ Φ=Φ0. Near the minimum the
spectrum may be approximated as

λ0ðmÞ≡λ0m≈λ�
�
1þðm−m�Þ2

κ2m�

�
; m�≈

Φ
Φ0

≫ 1; ð11Þ

where κ ≈ 1.4.
To make a connection with the boundary contribution to

the Cooperon, Eq. (8), we analyze the asymptotic behavior
of the exact expression

Cðr; r0Þ ¼
X
mn

eimðφ−φ0Þfnmðr=lBÞfnmðr0=lBÞ
ϵnm

:

At large distances, jφ − φ0jm� ≫ 1 and r≃ r0 ≃m�lB, the
exponential decay is determined by the pole closest to the
real axis, and we obtain

C≃ exp ½im�ðφ − φ0Þ − κ
ffiffiffiffiffiffi
m�p

jφ − φ0j�;

which corresponds to the edge physics discussed above.
Physical manifestations.—The surface contribution to

the Cooperon gives rise to anomalous magnetic field
dependence of the well-known quantum interference cor-
rections to thermodynamic and transport characteristics of
disordered conductors. To be concrete, we consider the
simplest fluctuation correction to the thermodynamics of
the superconductor in the normal state. The surface con-
tribution becomes especially pronounced in the vicinity of
the critical field Hc3 [13]. The fluctuation correction to the
free energy, which may be probed in high precision
persistent current measurements (see Ref. [14] and refer-
ences therein), is connected to the eigenvalues (10) by [2]

δF ¼ T
X
k;n;m

ln

�
ln

�
T
Tc0

�
þΨ

�jkj
2
þ ℏDλnm
4πl2BT

�	
; ð12Þ

where ΨðxÞ≡ ψðxþ 1=2Þ − ψð1=2Þ, ψðxÞ being the
digamma function. The k ¼ 0 Matsubara frequency corre-
sponds to the classical fluctuations. Quantum fluctuations
are encoded in the summation over all k.
At zero magnetic field min ϵβ ¼ 0 and the correction

(12) is meaningful only for T > Tc0, where the normal
phase is stable. At a finite magnetic field λnm ≥ λ� > 0, and
the normal phase is stable even at T < Tc0 for B > Hc3ðTÞ,
where surface superconductivity emerges [13],

ln ðTc0=TÞ ¼ Ψðλ�eDHc3ðTÞ=½4πcT�Þ: ð13Þ

The part of the free energy oscillating with the total flux Φ
can easily be found using Eqs. (10)–(12). Summing over m
with the aid of the Poisson summation formula, we obtain
to leading exponential accuracy

Fos ¼ T
X
k;j≠0

Z
∞

−1=2
dmei2πjm

× ln

�
ln

�
T
Tc0

�
þΨ

�jkj
2
þ λ0ðmÞeDB

4πcT

�	
: ð14Þ

At m� ≫ 1 the integral is determined by the branch cut of
the logarithm. The branching point mb is determined by
λ0ðmbÞ ¼ λ�Hc3=B − 2πcTjkj=ðeDBÞ. Near Hc3 this
condition can be simplified using Eqs. (11) and (13),

mb ¼ m� � iκ
ffiffiffiffiffiffi
m�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B −Hc3ðTÞ

B
þ 2eγjkjT

Tc0

Hc3ð0Þ
B

s
;

where γ ≈ 0.577 is the Euler-Mascheroni constant.
Integrating along the branch cut and summing over the
Matsubara frequencies k, we obtain

F ¼ −T
X∞
j¼1

2

j
cos

�
2πjΦ
Φ0

�
exp

�
−j

p
ξ3

�

× coth
�
j
p
ξ3

eγTHc3ð0Þ
2Tc0½B −Hc3ðTÞ�

�
: ð15Þ

Here the correlation length ξ3 is determined by the
proximity of the magnetic field to the value of Hc3ðTÞ,

ξ3 ¼
lB
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

B −Hc3

s
;

and p ¼ 2πR is the sample perimeter. To arrive at Eq. (15)
we used the relation

ffiffiffiffiffiffi
m�p ¼ p=ð2πlBÞ. In this form

Eq. (15) remains valid for samples of noncircular shape.
The function coth x in (15) describes the crossover between
the classical (at x ≫ 1) and quantum (at x ≪ 1) fluctuation
regimes. In contrast to a bulk system, the characteristic
crossover scale depends on the boundary length, which
reflects the surface origin of the effect.
Equation (15) is the main illustrative result for the

surface interference contribution we discussed. Similar
oscillations should also appear not in the transport proper-
ties of mesoscopic singly connected devices, e.g., the
Aslamazov-Larkin corrections to the conductance [15] of
normal systems or superconductor–normal metal hybrid
structures, resembling the results [16] for thin cylinders.
Quantitative investigation of transport effects requires
analysis of current redistribution near the edges of the
sample and will be reported elsewhere. Oscillatory flux
dependence of the conductance of singly connected wires
and SNS junctions was recently reported in Refs. [17–20].
The observations of Ref. [19] were interpreted in Ref. [21]
in terms of formation of superconducting vortices inside the
sample. Our findings show that oscillatory flux dependence
of the properties of diffusive singly connected conductors is
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a much more general phenomenon which occurs even in the
absence of superconductivity.
In conclusion, we identified a novel contribution to the

magnetic field dependence of quantum interaction correc-
tions in finite conductors. It arises from diffusive trajecto-
ries confined to the surface of the sample and gives rise to
Aharonov-Bohm oscillations even in singly connected
samples. In nonsingly connected samples or samples with
holes or cavities, AB oscillations will have multiple periods
determined by the areas of extremal sections for each
bounding surface.
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