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We relate the ground state degeneracy of a non-Abelian topological phase on a surface with boundaries
to the anyon condensates that break the topological phase into a trivial phase. Specifically, we propose that
gapped boundary conditions of the surface are in one-to-one correspondence with the sets of condensates,
each being able to completely break the phase, and we substantiate this by examples. The ground state
degeneracy resulting from a particular boundary condition coincides with the number of confined
topological sectors due to the corresponding condensation. These lead to a generalization of the Laughlin-
Tao-Wu charge-pumping argument for Abelian fractional quantum Hall states to encompass non-Abelian
topological phases, in the sense that an anyon loop of a confined anyon winding a nontrivial cycle can
pump a condensed anyon from one boundary to another. Such generalized pumping may find applications
in quantum control of anyons, eventually realizing topological quantum computation.

DOI: 10.1103/PhysRevLett.114.076401 PACS numbers: 71.10.Pm, 05.30.Pr, 11.15.-q, 71.10.Hf

Introduction.—A key feature of intrinsic topological
orders is the existence of protected ground state degeneracy
(GSD). On closed spatial 2-surfaces, its genus number and
the fusion rules between anyon excitations determine the
GSD [1–8]. Protected GSD is vital to topological quantum
computation, and yet realizing GSD on high genus closed
surfaces is unfeasible in experiments. Obviously it is much
more natural to build finite open systems. Yet, it is
necessary that any boundary massless modes that often
appear can be gapped to have a well-defined GSD. The
gapping conditions of Abelian phases have recently been
understood very well in terms of the concept of Lagrangian
subsets [9–14], and subsequently the GSDs of these
Abelian phases on open surfaces with multiple boundaries
were computed [13,15], based on the idea of anyon
transport across boundaries. Experiments detecting and
applying the topological degeneracy with gapped bounda-
ries were proposed in Refs. [16,17]. Nevertheless, non-
Abelian phases bear much richer sets of degenerate ground
states, and the braiding of non-Abelian anyons serves as the
best known candidate that may realize universal topological
quantum computing. It is also hopeful to realize or simulate
non-Abelian anyons [18]. Despite the importance of under-
standing non-Abelian phases on open surfaces, it remains
a big open problem, a problem we shall solve here via
the method of anyon condensation. In summary, our main
results are as follows:
(a) We find the condition for gapped boundaries of

nonchiral non-Abelian phases by identifying each such
boundary to a set of anyon condensates; the condition
allows one to classify all gapped boundaries for the given
phase. Our results also encompass situations in which a
defect or phase boundary separates arbitrary phases

because any such system can always be mapped back to
one where a phase ends on the trivial vacuum by the
folding trick.
(b) For any given boundary conditions on some arbitrary

open system, we describe the computation of the GSD,
dictated by a reduced set of conserved topological
sectors—the set of confined anyons—anyons mutually
nonlocal with the boundary condensate. Typically, on a
cylinder,

GSD ¼ Number of confined anyons: ð1Þ
We show an explicit nontrivial example of a GSD counting
on a cylinder whose two ends have distinct boundary
conditions. Note that such reduction in the number of
conserved anyons suggests a novel way to engineer desired
conserved bulk anyons suitable for specific quantum
computations. Our method is corroborated using the
correspondence between a generic non-Abelian phase A
and its double A × Ā via the folding trick.
(c) We find connections between our counting and prior

works on Abelian phases that make use of charge transport.
This generalizes the Laughlin-Tao-Wu (LTW) charge-
pump argument in Abelian fractional quantum Hall states
(FQHSs) [1,19] to generic anyon-pump in non-Abelian
phases, hinting at novel ways of braiding and controlling
non-Abelian anyons. Such anyon transport may also help
experimentally discern different topological phases [16,17].
We shall make heavy use of the technologies studying

anyon condensation [20–22]. The basic premise of anyon
condensation is that certain types of anyons cease to have a
conserved particle number across a phase transition; they
thus effectively condense, exactly as how Cooper pairs
condense, in the process breaking some symmetry. As in
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usual Bose-Einstein condensation, the condensable anyons
should have bosonic self-statistics. There are various
constraints that determine the properties of the condensed
phase, such as the types of anyons that remain conserved
and their fusion rules. We shall refer the reader to the
original references for details. Some prior attempts on non-
Abelian phases are found in Refs. [23,24].
GSD of theZ2 toric code on open surfaces revisited.—To

explain the generalization of Lagrangian subsets and the
subsequent GSD counting in Abelian phases, we revisit
these concepts from the perspective of anyon condensation
by taking the Z2 toric code as an example. Recall that the
Z2 toric code has four topological sectors f1; e; m; fg,
where e;m are self-bosons, and f a fermion. Any two
distinct nontrivial anyons are mutual fermions. The non-
trivial fusion rules are e2 ¼ m2 ¼ f2 ¼ 1 and e ×m ¼ f.
Each boundary of the system admits two distinct gapp-
ing conditions, respectively characterized by the two
Lagrangian subsets:

Le ¼ f1; eg; Lm ¼ f1; mg: ð2Þ

A Lagrangian subset L is a maximal collection of anyons
that are self-bosons with trivial mutual statistics and that all
remaining anyons excluded from the set are nonlocal with
respect to at least one member of L [9–12]. This is clearly
satisfied by both sets in Eq. (2). One crucial observation
[9,10,13,20–22,25,26] is that for the boundary condition
characterized by a set Li, an anyon in the set ceases to be
conserved and can be either created or annihilated at the
boundary. Therefore, a gapped boundary condition Li is
equivalent to the condensation of the anyons in Li right at
the boundary. Any anyon not in a condensed Li would be
confined at the boundary [20–22,25–27]. For example, m
and f are confined in the Le condensate and thus are mobile
in the bulk but fail to cross the boundary into the vacuum.
Equally important, in the vicinity of the Le condensate, m
and f are indistinguishable, like 1 and e become identified,
by fusion with any number of e’s freely supplied by the
boundary condensate [20–22,25–27]. This leads to an easy
GSD counting. Consider a cylinder with both boundaries
characterized by Le. A convenient basis for ground states
consists of uncontractible anyon loops winding the cylin-
der. For the Le boundaries, only two distinct anyon loops
exist: 1 and m. One then infers that

GSDLeboundaries on cylinder
Z2toric code ¼ 2; ð3Þ

in accord with the result of Ref. [13]. This is illustrated in
Fig. 1. The LTW charge-pump argument for FQHS [1,19]
applies here: If one threads a magnetic flux loop around the
cylinder and adiabatically increases it from zero to a unit m
flux, a charge e can be pumped from one boundary to the
other of the cylinder, as depicted in Fig. 1.

To deal with more boundaries potentially characterized
by different Li’s, we need only to work out the remaining
conserved (i.e., confined) distinct uncontractible
anyon loops, and the anyon loops around different
cycles must admit at least a fusion channel. We now
generalize the procedure described above to non-Abelian
phases.
GSD of Non-Abelian phases on open surfaces.—We now

lay down the general procedure to obtain the GSD of a
generic non-Abelian topological order with boundaries. We
will illustrate each step with the example of the doubled
Fibonacci model. To avoid clutter, the topological data of
the doubled Fibonacci model and notations are reviewed in
the Supplemental Material [28].
Defining boundary conditions: First we have to decide

upon the boundary condition on each boundary. Each
boundary whose edge modes could be completely gapped
is characterized by a generalized Lagrangian subset L,
which is a collection of anyons that could condense
simultaneously at the boundary, and that the resultant
phase after the condensation T L contains only confined
anyons as well as the trivial sector. As reviewed in the
Supplemental Material [28], in the case of F × F̄, it has
Lττ̄ ¼ f1; ττ̄g, leading to T Lττ̄

¼ f1; χg, where χ behaves
like a Fibonacci anyon τ except for its lack of a well-
defined topological spin.
Counting GSD via confined charges: If all the bounda-

ries are characterized by the same L, the GSD is obtained as
follows. We first find out the fusion rules of all the confined
anyons in T L. Then we count all possible basis states
constructed from loops of confined anyons winding
nontrivial cycles. This must satisfy the consistency con-
dition on anyons wrapping cycles that merge have to fuse to
the anyon wrapping the resultant merged cycle. This is to
ensure no net charge exists in the bulk.
Consider for example F × F̄ on a cylinder (see Fig. 2),

where both boundaries must be characterized by Lττ̄. As a
result, the only conserved nontrivial topological sector
must be the confined χ ∈ T Lττ̄

, as it cannot leak through
the boundaries into the vacuum. We conclude that the two
distinct sectors in T L imply that

FIG. 1 (color online). Ground state basis specified by a
conserved anyon line m winding the cylinder where the bounda-
ries are characterized by the Le condensate. A unit of e is
transferred across the boundaries via the LTW charge pumping
mechanism if the unit m line can be changed to two units
adiabatically.
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GSDcylinder
F×F̄ ¼ jT Lττ̄

j ¼ 2: ð4Þ

To check our claims, note that it is expected that

GSDcylinder
F×F̄ ¼ GSDtorus

F : ð5Þ

This is because F × F̄ ending at a boundary can be thought
of as folding up a Fibonacci phase characterized by a single
copy of the anyons f1; τg. Thus the F × F̄ on a cylinder is
in fact equivalent to the Fibonacci phase itself residing
on two different cylinders, yet joined at both boundaries
because of the gapped boundary condition we imposed on
F × F̄. That is, we have in fact F on a torus. Similarly, we
can consider placing the F × F̄ on a surface with three
holes, or the “pants diagram” [a special case of Fig. 3(a)].
The three boundaries must again be characterized by Lττ̄.
On this surface, when two confined anyon loops a and b,
respectively, winding two of the three cycles (holes) merge
to an anyon loop c winding the third cycle, the three loops
of anyons must admit a fusion channel. The GSD counting
in this scenario then boils down to the formula

GSDpants
F×F̄ ¼

X

a;b;c∈T Lττ̄

Nc
ab ¼ 5; ð6Þ

where for a given c, the fusion matrix element Nc
ab is the

multiplicity of c in the fusion product of a and b. This again
agrees with the expected result following from

GSDpants
F×F̄ ¼ GSDgenus-2 torus

F : ð7Þ
We note that such a correspondence between a “doubled
phase” on a surface with gapped boundaries characterized

by condensates of all the diagonal pair—the analogues of
ττ̄—and the undoubled phase on a closed surface is in fact
generic. This correspondence offers a nontrivial check of
our methods in large classes of non-Abelian phases
expressible as a doubled phase using well-known results
of GSD of phases on closed surfaces, and by which we find
perfect agreement.
More generically, the boundaries could also be charac-

terized by different Li’s, which would contain anyons not
mutually local. One would have to work out the condensed
phase T Li

at each boundary, and then further reduce the
number of conserved anyons, which correspond roughly
to finding an intersection of the T Li

’s. The fusion between
the remaining conserved anyons again determine the
GSD. There is not, to date, a fully systematic procedure
dealing with multiple sets of nonmutually local conden-
sates, but we will exemplify how this is to work by a
nontrivial example in the next section. In summary
(Fig. 3), assuming that there are M > 3 boundaries,
respectively characterized by (potentially identical)
Lagrangian subsets Li’s,

GSDfLig ¼
X

fai;big
Nb1

a1a2

YM−4

i¼1

Nbiþ1

aiþ2bi
NāM

aM−1bM−3
; ð8Þ

where fT Li
g ≔ ∩M

i¼1T Li
, bi’s are the intermediate fusion

channels, and fai; big refers to summing over fT Li
g. Note

that the product term exists only for M ≥ 5.
Counting GSD via charge transport: As alluded to at the

beginning and also in the discussion of Abelian phases, we
can alternatively count the GSD by considering charge
transport across boundaries. This amounts to counting the
fusion channels producing the trivial sector, between any-
ons across Lagrangian subsets Li’s characterizing the
boundaries. Recall that F × F̄ on a cylinder has a GSD
given in Eq. (4). The same result can be obtained by
counting the fusion channels between condensed anyons on
the two boundaries to the trivial sector. Specifically, since
there is only one trivial fusion channel in ττ̄×ττ̄¼1þ1τ̄þ
τ1̄þττ̄, together with the obvious trivial fusion channel
1 × 1 ¼ 1, there are exactly 2 trivial fusion channels. Such
an agreement between the two different ways of counting
the GSD motivates a generalization of the aforementioned
LTW argument for FQHS to the case of non-Abelian
topological phases. That is, in a non-Abelian (gauge)
theory, there should exist some adiabatically changing
Wilson (anyon) loop, e.g., χ around the cylinder, which
pumps a unit of the condensed ττ̄ from one boundary to the
other [Fig. 2(a)].
As will be seen in the next section, such a flux-charge

correspondence would work only if each Li also includes
the multiplicity data of a condensed anyon—the number of
condensed sectors contained in each anyon in Li that splits
under condensation. This extra twist in the story makes
GSD counting by confined anyons more natural.

FIG. 2 (color online). (a) F × F̄ on a cylinder with both
boundaries characterized by the Lagrangian subset f1; ττ̄g.
(b) Single Fibonacci phase on a torus. The two systems are
equivalent.

FIG. 3 (color online). (a) An open surface with M > 3
boundaries. (b) A genus-ðM − 1Þ torus.
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Z3
2 twisted quantum double.—We now present here a

fascinating example—the Z3
2 twisted quantum double

(TQD) [29–31]—that bears more than one set of nontrivial
gapped boundary conditions. As a twisted version of the
G ¼ Z3

2 Kitaev model, this model contains 22 distinct
anyons. As in other gauge theories, the electric charges are
representations of the gauge group G, and as such they
come in 8 distinct types. We can denote them by Ee1e2e3,
where ei ∈ f0; 1g, corresponding to the trivial and non-
trivial one dimensional representations of each of the
three Z2 groups in G. The rest of the anyons are 14 non-
Abelian dyons all with quantum dimension 2, denoted
by D�

m1m2m3
, where mi ∈ f0; 1g, and m1m2m3 ≠ 000.

Their properties, such as fusion rules, are detailed
in the Supplemental Material [28]. We focus on two
distinct admissible Lagrangian subsets, LE and LD. Set
LE ¼ fEe1e2e3g contains all the electric charges. As
explained in the Supplemental Material [28], the con-
densed phase T E contains the new trivial sector and 7
nontrivial confined anyons that descend from the dyons,
where D�

m1m2m3
→ 2dm1m2m3

. This gives, on a cylinder
with both boundaries characterized by LE,

GSDLEboundaries on cylinder
Z3

2
TQD

¼ 8: ð9Þ

This immediately agrees with the result obtained by
considering allowed charge transport across the bounda-
ries, i.e., the number of fusion channels between the
condensed anyons in the top and bottom boundary that
fuse to the trivial sector. More interesting is the boundary
characterized by LD, where

LD ¼ f2Dþ
100; E0e2e3g: ð10Þ

The resultant condensed phase T D contains again 8 distinct
sectors, 7 of which confined and descended from the other
dyons and electric charges of the formE0e2e3 . Avery special
thing arises here: The condensed anyonDþ

100 → 1þ 1 splits
into two copies of the vacuum in the condensed phase T D.
This is unlike the examples encountered above, where each
sector appearing in the condensate only splits into the trivial
sector once. To make that information explicit, we have
included the dyon Dþ

100 twice in defining the set LD above.
Now the number of confined sectors in T D would indicate
that on a cylinder,

GSDLDboundaries on cylinder
Z3

2
TQD

¼ 8 ð11Þ

again. However, a naive count of allowed charge transport
across the boundaries gives only 5 channels, if we count
Dþ

100 only once. The only way to recover a match between
these two ways of counting is to take Dþ

100 literally as
appearing twice, so that they alone contribute 22 ¼ 4 fusion
channels between the top and bottom boundaries to the
trivial sector, instead of only one as in the naive count. Then

we recover aD ¼ 4þ 4 ¼ 8.We therefore postulate that the
generalization of the Lagrangian subset in non-Abelian
phases must include specifying the multiplicity of a con-
densed anyon—the number of condensates that is actually
contained in the splitting of the anyon after anyon con-
densation. We have tested this postulate in this model in
surfaces with more boundaries and found that the counting
via charge-transport across boundaries continue tomatch the
analysis via confined sectors in the condensed phase. We
have also checked our postulate in the quantum double
model with group G ¼ D3. The GSD due to a condensate
involving multiplicities greater than 1 again supports our
postulate.
To end the section, we return to the Z3

2 TQD model on a
cylinder, with, now, the left boundary characterized by LE
and the right by LD. The two sets of anyons have exactly 4
fusion channels that can fuse to one, namely, the fusion of
the four shared electric charges. So the charge transport
reasoning leads to the interesting result

GSDLEleft;LDright
Z3

2
TQD

¼ 4: ð12Þ

The same result can be obtained via counting the confined
sectors, as depicted in Fig. 4. As aforementioned and
detailed in the Supplemental Material [28], T D has 8
sectors, conveniently denoted by

f1; d1;2m2m3
; djm2m3 ≠ 00g; ð13Þ

satisfying the following important fusion rule:

d1ð2Þm2m3
⊗ d ¼ d2ð1Þm2m3

: ð14Þ

Since d descends from E1e1e2 , it is is no longer conserved in
the other boundary where all electric charges are in LE and
condense. Hence, d�m2m3

becomes indistinguishable, and the
GSD is determined by the following four states each with
an anyon line winding the nontrivial cycle

fj1i; jd01i; jd10i; jd11ig; ð15Þ

leading again to a precise match. This is the first example to
date of a non-Abelian phase whose GSD on an open surface
with multiple boundary conditions is computed.

FIG. 4 (color online). Z3
2 twisted quantum double on a cylinder

with the left boundary characterized by electric condensation LE
and the right one by dyonic condensation LD. GSD ¼ jTE∩TDj.
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Conclusion.—We have achieved the long sought goal to
count the GSD of a generic nonchiral non-Abelian topo-
logical order with boundaries, making use of insights and
techniques developed in the past [9,13,20–22,25,26,32].
We note that very much analogous to prior analysis of
gapped boundary conditions via the introduction of explicit
boundary gapping terms, one could imagine that such an
analysis is also possible for non-Abelian phases. Some
preliminary work has been done for example in Ref. [33],
in which explicit terms can be written down, whenever the
bulk non-Abelian phase adopts a simple construction based
on orbifolding Abelian ones. It would be useful to general-
ize these studies to other non-Abelian phases. Given the
importance of robust GSD as a resource in topological
quantum computation, our new understanding will be
crucial towards finding experimental realizations and
applications of topological orders.
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