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The nature of the normal state of an ultracold Fermi gas in the BCS-BEC crossover regime is an
intriguing and controversial topic. While the many-body ground state remains a condensate of paired
fermions, the normal state must evolve from a Fermi liquid to a Bose gas of molecules as a function of the
interaction strength. How this occurs is still largely unknown. We explore this question with measurements
of the distribution of single-particle energies and momenta in a nearly homogeneous gas above Tc. The data
fit well to a function that includes a narrow, positively dispersing peak that corresponds to quasiparticles
and an “incoherent background” that can accommodate broad, asymmetric line shapes. We find that the
quasiparticle’s spectral weight vanishes abruptly as the strength of interactions is modified, which signals
the breakdown of a Fermi liquid description. Such a sharp feature is surprising in a crossover.
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Landau’s Fermi liquid theory is a well-established and
powerful paradigm for describing systems of interacting
fermions [1,2]. It postulates that even in the presence of
strong interactions, the system retains a Fermi surface and
has low energy excitations that are long-lived, fermionic,
and nearly noninteracting. The effect of interactions is
incorporated into renormalized properties of these quasi-
particle excitations, such as an effective mass, m�, that is
larger than the bare fermion mass,m, and a spectral weight,
or quasiparticle residue, that is between zero and one [2].
While Fermi liquid theory is extremely successful in
describing a wide range of materials, it fails in systems
exhibiting strong fluctuations or spatial correlations.
Understanding the origin of such breakdowns of a Fermi
liquid description is an outstanding challenge in strongly
correlated electron physics [3].
An ultracold Fermi gas with tunable interactions is a

paradigmatic strongly correlated system. These atomic gases
provide access to the crossover from Bardeen-Cooper-
Schrieffer (BCS) superconductivity to Bose-Einstein con-
densation (BEC) of tightly bound fermion pairs [4–8]. The
question of whether the Fermi liquid paradigm breaks down
in the normal state of the crossover is related to the prediction
of a “pseudogap” phase, where incoherent many-body
pairing occurs above the transition temperature Tc. This
pseudogap phase has bosonic (pair) excitations, in contrast
to the fermionic excitations of a conventional Fermi liquid.
In experiments that probed the strongly interacting gas in
the middle of the crossover, Fermi-liquid-like behavior was
observed in thermodynamics [9,10] and spin transport
properties [11]. Meanwhile, evidence for pairing above Tc
was reported in photoemission spectroscopy (PES) mea-
surements [12], which reveal the distribution of single-
particle energies and momenta in a many-body system
[13,14]. Interpretation of these data has been controversial,

with a Fermi liquid theory and a pseudogap theory, each
separately argued to agree with the observations [15–17].
Issues raised include the fact that the PES measurements
probed a trapped gas, where averaging over the inhomo-
geneous density can obscure the intrinsic physics [15,18],
and that thermodynamics measurements are relatively insen-
sitive to a pseudogap compared to spectroscopy. Thus, the
question of how a Fermi liquid evolves into a Bose gas of
paired fermions in the BCS-BEC crossover, and whether a
Fermi liquid description breaks down, remains open. Here,
we answer this question with the first PES of a nearly
homogeneous Fermi gas; we perform measurements above
Tc for a range of interaction strengths through the crossover
[Fig. 1(a)], and find that quasiparticle excitations, which
exist on the BCS side, vanish abruptly beyond a certain
interaction strength on the BEC side.
We prepare a gas of 40K atoms in an equal mixture of two

spin states, where the scattering length, a, that parametrizes
the interactions is varied using a Fano-Feshbach scattering
resonance [22] [see Fig. 1(a) and Supplemental Material
[23]]. To eliminate the complications arising from density
inhomogeneity, we combine momentum-resolved rf spec-
troscopy [13] [Fig. 1(b)] with spatially selective imaging
that probes only atoms from the trap center where the
density is the highest and has the smallest spatial gradients
[20] [Fig. 1(c)]. The lower panel of Fig. 1(d) shows PES
data taken above Tc for several values of ðkFaÞ−1, where kF
is the Fermi wave number. The PES signal, Iðk; EÞ, is
proportional to k2Aðk; EÞfðEÞ, where Aðk; EÞ is the atomic
spectral function [13,30] and fðEÞ is the Fermi function.
Here, E and k are in units of EF and kF, respectively, and
we normalize each data set so that the integral over all k and
E equals 1.
The data in Fig. 1(d) show an evolution from a positively

dispersing, quasiparticle-like spectrum to a broad, negatively
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dispersing spectrum. Previous trap-averaged atom PES data
showed back-bending and large energy widths [12,16].
These features are also apparent in the nearly homogeneous
data [23]. However, these data are more amenable to
quantitative analysis because kF (and EF) are approximately
single-valued across the sample. Similar to the analysis done
in electron systems, we use a two-mode function to describe
the PES signal [31]

Iðk; EÞ ¼ ZIcoherentðk; EÞ þ ð1 − ZÞIincoherentðk; EÞ; ð1Þ

where the first part describes quasiparticles with a positive
dispersion, the second part accommodates an “incoherent
background” that exhibits negative dispersion, and Z is the
quasiparticle spectral weight. When these two parts (defined
below) are combined, the resulting dispersion can exhibit
back-bending.
The quasiparticles in Fermi liquid theory are long-lived

and, therefore, give rise to narrow energy peaks, which, in
principle, could be directly observed. However, such peaks

would be broadened by our experimental resolution of
about 0.25EF. This resolution is set by the number of atoms
(with EF scaling only weakly with increasing N) and the rf
pulse duration (see Supplemental Material [23]), which
must be short compared to the harmonic trap period in
order to probe momentum states. We convolve Eq. (1) with
a Gaussian function that accounts for our energy resolution
before fitting to the data in order to determine the spectral
weight of the quasiparticles [Fig. 1(d), upper panel].
To describe quasiparticles, we use

Icoherentðk; EÞ ¼ 4πk2δ

�
E −

k2

m� − E0

�

×
f−ðπm�TÞ3=2Li3=2½− expð−E0þμ

T Þ�g−1
expðE−μT Þ þ 1

;

ð2Þ

which consists of a quadratic dispersion of sharp quasi-
particles multiplied by a normalized Fermi distribution (δ is

FIG. 1 (color). Atom PES data. (a) We take data above Tc in the strongly interacting region of the BCS-BEC crossover [19]. After
initially preparing the gas at small, positive a, the magnetic field is swept adiabatically to a final value within the BCS-BEC crossover,
where jðkFaÞ−1j < 1. (b) Schematically, a rf photon, which has a negligible momentum, transfers an atom from the strongly interacting
state (blue line) to a weakly interacting state (green line). The energy and momentum of the atom in the strongly interacting state are
extracted from the measured momentum of the spin-flipped atom and the rf detuning ν [13]. The detuning, ν, of the rf frequency is varied
to obtain data for a wide range of E and k. (c) Immediately following the rf pulse and before time-of-flight expansion, two orthogonally
propagating hollow-core beams optically pump atoms at the edges of the outcoupled atom cloud into a dark state [20,21]. The durations
of both the rf pulse and optical pumping are short compared to the motion of atoms in the trap. (d) (lower panel) In these example plots of
PES data, the color represents the probability distribution of atoms at a given E and k in the strongly interacting gas. We estimate that the
error bar of ðkFaÞ−1 is 0.03. E ¼ 0 is the energy of a free atom at rest and the white line shows the free-particle dispersion E ¼ k2.
(d) (upper panel) Our two-mode fit function includes a fermionic quasiparticle part, shown on the left with m� ¼ 1.05, E0 ¼ −0.1,
μ ¼ 0.5, and T ¼ 0.25, and an incoherent part, shown on the right with Ep ¼ 1.5 and Tp ¼ 0.7.
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the Dirac delta function, and Li is the polylogarithm
function). We include, as fit parameters, a Hartree shift
E0, effective mass m�, chemical potential μ, and temper-
ature T. Here, energies are given in units of EF and m� in
units ofm. This description of Fermi liquid quasiparticles is
typically only used very near kF and for T approaching
zero, whereas we fit to data for a larger range in k and with
temperatures near 0.2 TF (just above Tc). The latter is
necessitated by the unusually large interaction energy
compared to EF, and we note that 0.2 TF is still sufficiently
cold that one can observe a sharp Fermi surface in
momentum [20]. Any increase in quasiparticle widths
away from kF will have little effect on the data as long
as the quasiparticles have an energy width less than our
energy resolution, which should be the case for long-lived
quasiparticles. Finally, using a quadratic dispersion over a
large range of k is supported by the data [23].
The second part of Eq. (1) needs to accommodate the

remainder of the signal, which is often referred to as an
“incoherent background” in a Fermi liquid description. For
fermions with contact interactions, one expects an incoher-
ent background at high momentum due to short-range pair
correlations [32–34]. Motivated by this and by the normal
state in the BEC limit, we use for Iincoherent a function that
describes a thermal gas of pairs. The pairs have a wave
function that decays as exp ð−r=RÞ, where r is the relative
distance and R is the pair size [35], and a Gaussian
distribution of center-of-mass kinetic energies character-
ized by an effective temperature Tp. This gives

Iincoherentðk;EÞ ¼Θð−Ep−Eþ k2Þ

×
8k

ffiffiffiffi
Ep

Tp

q
exp

EpþE−3k2

Tp sinh
�
2
ffiffi
2

p
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ep−Eþk2

p
Tp

�
π3=2ðE− k2Þ2 ;

ð3Þ

where Θ is the Heaviside step function, Ep is a pairing
energy defined by kFR ¼ ffiffiffiffiffiffiffiffiffiffiffi

2=Ep

p
, and both Ep and Tp are

dimensionless fitting parameters (see Supplemental
Material [23]). While this description of the incoherent
piece may not fully capture the microscopic behavior
except in the BEC limit, we find, nonetheless, that
Eq. (1), after convolution with a Gaussian that accounts
for our energy resolution, fits the data very well throughout
the crossover. For each value of ðkFaÞ−1, we perform
a surface fit to the roughly 300 points that comprise the
PES data Iðk; EÞ for k ≤ 1.5 and E ≥ −3. The reduced
chi-squared statistic, χ2, after accounting for the seven fit
parameters, is between 0.75 and 1.3. An example fit is
shown in Fig. 2, where we show several traces at fixed k for
PES data taken near unitarity.
In Fig. 3(a), we show Z as a function of ðkFaÞ−1. For our

lowest ðkFaÞ−1, Z ≈ 0.8; however, Z decreases rapidly
going from the BCS side of the crossover (negative a) to

the BEC side (positive a), reaching Z ≈ 0.3 at unitarity.
Beyond ðkFaÞ−1 ¼ 0.28� 0.02, Z vanishes, signalling
the breakdown of a Fermi liquid description. Restricting
the fitting to a smaller region around kF gives results for Z
that are consistent with the fits to k ≤ 1.5 [see Fig. 3(a)].
We note that the interaction strength where Z vanishes, as
well as the sharpness with which Z goes to zero, are likely
to be temperature dependent [36]. The best fit values for
the effective mass, m� are shown in Fig. 3(b), where m�
increases with increasing interaction strength as expected
for a Fermi liquid. A linear fit gives m� ¼ 1.21� 0.03 at
unitarity, which is somewhat higher thanm� ¼ 1.13� 0.03
measured in Ref. [9], but close to the T ¼ 0 prediction of
m� ¼ 1.19 from Ref. [18]. The other fit parameters for the
two-mode function are shown in Fig. S4 in Ref. [23].
We note an interesting comparison of our results with the

Fermi polaron, which is the quasiparticle in the limit of a
highly imbalanced Fermi gas. Schirotzek et al. measured
Z ¼ 0.39� 0.09 for the Fermi polaron at unitarity [38],
which is similar to our result for the balanced Fermi gas.
For the polaron case, Z also goes to zero in a similar fashion
to our results, but farther on the BEC side of the crossover
[38]. This similarity is surprising because we expect a
phase transition from polarons to molecules in the extreme
imbalance limit [39,40], with Z acting as an order param-
eter [41], while, in contrast, the balanced Fermi gas should
exhibit a continuous crossover. For m�, we also find that
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FIG. 2 (color online). EDCs for atom PES data near unitarity.
Data (circles) and fits (lines) are shown for several example traces
at fixed k through the PES data at ðkFaÞ−1 ¼ −0.08. These traces
are often called energy distribution curves, or EDCs. Here, the
fitting parameters are Z ¼ 0.37� 0.03, m� ¼ 1.22� 0.03, T ¼
0.24� 0.02, E0 ¼ −0.33� 0.02, μ ¼ 0.19� 0.04, Ep ¼ 0.23�
0.04, Tp ¼ 1.09� 0.08, where the error margins are for one
standard deviation and also include a 5% uncertainty in EF. For
this fit, the reduced χ2 is 1.2.
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our result is close to the measured effective mass of the
Fermi polaron at unitarity [9], m� ¼ 1.20� 0.02, and
similar to the predicted polaron mass [10,37] throughout
our measurement range [solid line in Fig. 3(b)].
As ðkFaÞ−1 increases, short-range correlations are

expected to increase. This gives rise to increased weight
in the high-k part of the spectral function [34], which is
quantified by a parameter called the contact [21,32,33,42].
In a Fermi liquid description, the contact must be accounted
for by the incoherent part of the spectral function [34]. We
note that our particular choice for Iincoherent has the expected
form of a 1=k4 high-k tail in the momentum distribution
[32] and a 1=ν3=2 large-ν tail in the rf line shape [33], where
ν is the rf detuning. Remarkably, we find that the contact
can be accurately extracted from the fits to the PES data
even though we restrict the fits to k ≤ 1.5. For comparison,
1=k4 behavior in the momentum distribution was observed
for k > 1.5kF [42]. In Fig. 4, we plot the measured contact
per particle, C=N, in units of kF, as a function of ðkFaÞ−1.
The data extend previous measurements of the contact at
unitarity [18,44].
The results presented here can explain how different

observations lead to different conclusions regarding the
nature of the normal state of the unitary Fermi gas.
Although the data here taken just above Tc show that a

Fermi liquid description breaks down for
ðkFaÞ−1 ≥ 0.28� 0.02, Z remains finite at unitary.
Fermionic quasiparticles may play a key role in thermo-
dynamics, while PES data reveal back-bending and sig-
nificant spectral weight in an “incoherent” part that is
consistent with pairing. With the nearly homogeneous PES
data, we find that Z vanishes surprisingly abruptly and
note some similarity to Fermi polaron measurements.
Comparing the PES data with various BCS-BEC crossover
theories may help elucidate these observations and advance
quantitative understanding of the crossover.
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