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We show that the energy-momentum dispersion of a vertical semiconductor microcavity can be modified
by design using a high-index-contrast subwavelength grating (SWG) as a cavity mirror. We analyze the
angular dependence of the reflection phase of the SWG to illustrate the principles of dispersion engineering.
We show examples of engineered dispersions such as ones with much reduced or increased energy density of
states and one with a double-well-shaped dispersion. This method of dispersion engineering is compatible
with maintaining a high cavity quality factor and incorporating fully protected activemedia inside the cavity,
thus enabling the creation of new types of cavity quantum electrodynamics systems.
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The energy-momentum dispersion is a fundamental prop-
erty of a photonic system. The capability to modify the
dispersionusingengineeredphotonic systems isat theheart of
modern photonic technologies and the cavity quantum
electrodynamics research. For example, dispersion deter-
mines the phase and group velocities and, thus, the propa-
gation of the electromagnetic modes [1]. Dispersion also
controls the density of states (DOS) of the photonic modes,
and, thus the matter-light interactions in the system [2].
Recently, dispersionengineeringhasbeenused inmany-body
atomic systems to create synthetic magnetic fields [3], enab-
ling the simulation of quantum orders in non-Abelian gauge
fields. It was also proposed as a method to create exotic
quantumorders inmany-bodyphotonicormatter systems [4].
Dispersion engineering has been realized using engi-

neered photonic structures including metamaterials [5–8]
and photonic crystals (PhCs) [9–11]. However, metamate-
rials containing metal constituents suffer from intrinsic
Ohmic losses; 2D photonic crystals have large radiation
losses for the modes in the light cone. In addition, due to the
large surface-to-volume ratio of metamaterials and PhCs,
active media embedded inside are prone to surface recombi-
nation. These effects limit their usage in applications requi-
ringminimal loss or spatially extendedmatter-light coupling.
In this Letter, we demonstrate a new method to engineer

the dispersions of all-dielectric 1D or 2D vertical micro-
cavities, compatible with lossless embedment of active
media. We revisit the century-old resonance condition of a
Fabry-Perot cavity and demonstrate dispersion engineering
by designing the angular dependence of the reflection
phase of a nonconventional cavity mirror. We show that
strong angular dependence of the reflection phase of a
subwavelength grating (SWG) can be achieved due to the
unique symmetry properties of SWGs. As a result, photonic
and polaritonic dispersions can be created with curvatures
differing by many orders of magnitude. Flat or double-well-
shaped dispersions can also be created. Our method of
dispersion engineering enables greater flexibility in

controlling the photonic modes and matter-light inter-
actions in widely used quantum-well and quantum-dot
microcavities. It may allow, for example, the change of the
group velocity of the mode, enhanced Purcell effect without
additional transverse confinement, and optimized carrier
dynamics for polariton lasers with lower threshold. It may
open a door to the creation of many-body polariton systems
with unusual dispersions and quantum orders [12].
The energy vs in-plane momentum dispersion of a Fabry-

Perot-type cavity is governed by the angular dependence
of the reflection phase of the cavity mirrors. This is shown
by the round-trip phase condition for the cavity resonance,

ϕ1ðω; k∥Þ þ ϕ2ðω; k∥Þ − 2kc⊥d ¼ 2mπ: ð1Þ

Hereω is the angular frequency of the resonance, k∥ and kc⊥
are the in-plane and longitudinal wave numbers in the cavity
layer, respectively, d is the distance between the two cavity
mirrors, andm is an integer. The first two termsϕ1 andϕ2 are
the reflection phases of the two cavity mirrors. Equation (1)
uniquely determines the dispersion relation ωðk∥Þ.
Conventional microcavities use mirrors with a nearly

constant phase over a wide range of angles, resulting in a
rigid quadratic dispersion. Typical vertical microcavities
are made of two distributed Bragg reflectors (DBRs),
each consisting of multiple dielectric layers of alternating
high and low refractive indices. Each layer in a DBR has
an optical path length of λ=4, to maximize the reflectance
at the design wavelength λ. As a result, the reflection
phase of a DBR is integer times π at normal incidence and
varies very slowly with increasing k∥ [13]. For a λ=2
low-index cavity, ϕ1ðω; k∥Þ ≈ ϕ2ðω; k∥Þ ≈ π and m ¼ 0.

Using kc⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðncω=cÞ2 − k2∥
q

, for small k∥, we obtain a

quadratic dispersion,

ωðk∥Þ ≈ ω0

�

1þ k2∥
2ðncω0=cÞ2

�

: ð2Þ
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Here ω0 ¼ ωðk∥ ¼ 0Þ and nc is the refraction index of the
cavity. For an AlAs cavity, k2∥=ðncω0=cÞ2 < 0.1 is satisfied
for an incidence angle up to θ0 ¼ 44° in vacuum. The
curvature of the quadratic dispersion is determined by nc
and ω0, with no additional tuning available.
In contrast, we use an SWG as the cavity mirror [14,15],

which has many tunable parameters, enabling strong
angular dependencies of the reflection phase and, thus,
dispersion engineering. A schematic of an SWG-DBR
cavity we propose for dispersion engineering is shown
in Fig. 1(a). The top mirror consists of an SWG suspended
in air. The SWG has three grating parameters: its thickness
(tg), period (Λ), and duty cycle (η), as shown in Fig. 1(b).
These parameters, together with the thickness of the air
gap beneath the SWG, can provide flexibilities in cavity
design that are unavailable in DBR-DBR cavities. For
example, polarization selectivity and resonance tuning have
been demonstrated in vertical cavity surface-emitting lasers
(VCSELs) using SWGs as top mirrors [16–20]. Recently,
strong-coupling and exciton-polariton lasing have been
demonstrated in a zero-dimensional SWG-DBR cavity
[21,22]. These works on vertical SWG cavities have mainly
focused on modes with nearly zero in-plane momentum.
Here we explore the angular dependence of the reflection
phase of the SWG to demonstrate the unique capability of
dispersion engineering in an SWG-based cavity.
Unlike from a DBR, reflection from the periodic SWG

structure is produced by the scattering between the lateral
modes inside the SWG and Floquet-form diffraction modes
outside [23–25]. The lateral modes of an SWG are therefore
the key to understanding its reflection phase. We adopt the
waveguide-array (WGA) modes formulation, which was
introduced in [25] to explain intuitively the high reflectance
of the SWG at normal incidence. Below we generalize the
work in [25] and derive the WGA modes in SWGs of
arbitrary thickness in the general case of oblique incidence.
We will show that, due to symmetry properties of the
grating, the dispersion of the WGA modes could shift
considerably with the incidence angle, leading to large
changes in the reflection phase.
We treat the SWG as a waveguide array with the z axis

as the propagation direction, as shown in Fig. 1(b). It is
periodic in the x direction and translationally invariant in
the y direction. We focus the discussion on the case of an
incident plane wave propagating in the x-z plane with an
oblique angle θ0 from the z direction. For a WGA mode
with a TM polarization as labeled in Fig. 1(b), the lateral
mode profile HðxÞ and propagation constant β are deter-
mined by the eigenvalue equation

� ∂2

∂x2 þ n2ðxÞω
2

c2

�

HðxÞ ¼ β2HðxÞ ð3Þ

where nðxÞ is the refractive index. Because of the perio-
dicity of nðxÞ, the eigenmode can be expressed in the form
of Bloch waves,

HðxÞ ¼ eikxxunðxÞ;
where eikxx is the Bloch phase factor, kx is the in-plane
wave number of the incident wave (kx ¼ ω=c sin θ0), unðxÞ
is a periodic function, and the subscript n denotes the
discrete mode number. Given ω and θ0, we can solve for
the eigenvalues β2n and obtain the ω − β dispersion of the
WGA modes through [26]

2n2bkakbðcos kaa cos kbb − cos kxΛÞ
−ðn4bk2a þ k2bÞ sin kaa sin kbb ¼ 0: ð4Þ

FIG. 1 (color online). (a) Schematic of an SWG-DBR hybrid
vertical cavity. The SWG followed by an air gap and one high-
index DBR layer comprise the top mirror. We use Al0.15Ga0.85As
(refractive index nr ¼ 3.58) for the grating bars and high-index
DBR layers, and AlAs (nr ¼ 3.02) for the low-index DBR and
cavity layers. (b) Cross section of an SWG and the wave vectors
inside and outside the SWG. The SWG is treated as a WGA
between input plane z ¼ 0 and output plane z ¼ tg. The light
outside the WGA is the superposition of diffraction modes, with
only the zero-order mode propagating for an SWG and the
higher-order ones evanescent. ϕ0 is the reflection phase of the
zero-order wave. (c) The β − ω dispersions of the transverse-
magnetic (TM) WGA modes in an SWG with a duty cycle
η ¼ 65%, for incidence angles of 0° (blue line), 15° (pink), and
30° (cyan). Dash-dotted lines mark modes that cannot be excited.
The zeroth WGA modes at different angles almost overlap with
the TM0 mode. The higher modes shift with the incidence angle,
leading to large changes in the reflection phase. The gray shade
marks the dual-mode regime at normal incidence. The black
dashed lines are the dispersions of light in homogeneous air and
grating-bar dielectric medium.
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Here nb is the refractive index of the grating bar, a and b
are the widths of the air and bar regions, and ka;b is the
transverse wave number in the air or bar region, determined

by ka;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðna;bω=cÞ2 − β2
q

. An example of a WGAmode

dispersion is shown in Fig. 1(c).
In the case of normal incidence (blue lines), the incident

wave matches the reflection symmetry of the grating about
the center of the grating bars. Correspondingly, TM0;2;4;….
modes have the same symmetry and thus can be excited,
while the TM1;3;5;…. modes have the odd symmetry and
thus cannot be excited.
In the case of oblique-angle incidence, the incident plane

waves no longer have the reflection symmetry, and, thus, the
odd-order modes can also be excited. Avoided crossings
between the odd-order and even-order modes lead to signi-
ficant shift of themode dispersions, as illustrated in Fig. 1(c).
Reflection from an SWG with a finite thickness tg can be

understood as resulting from the interference of WGA
modes reflected from both the top and bottom SWG-air
interfaces. For a given WGA, for example, the WGA used
in Fig. 1(c), we can visualize the dependence of the
reflection on tg using tg-ω maps of the reflectance and
reflection phase, as shown in Fig. 2.
At normal incidence, for each of the WGA modes in

Fig. 1(c), the SWG forms a Fabry-Perot resonator when the
approximated round-trip phase condition βtg ¼ mπ is sat-
isfied, wherem is an integer [27]. We mark the correspond-
ing tg − ω values in Figs. 2(a)–2(b) with white dashed and
dash-dotted lines for the TM0 and TM2 modes, respectively.
The reflectance is nearly zero around these lines and the
reflection phase changes by π across the lines, which
are signatures of Fabry-Perot resonances. Naturally, high-
reflectance regions exist only between these lines, when
two WGA modes coexist and produce nearly perfect
destructive interference at the output plane of SWG [25,28].
At oblique angles, the appearance of the odd-order WGA

modes leads to large shifts of the WGA modes, which
manifests as large shifts of the reflectance and phase
patterns on the tg − ω maps. An example is shown in
Fig. 2(c)–2(d) for θ0 ¼ 30°. Consistent with the β − ω
diagram [Fig. 1(c)], the Fabry-Perot resonance lines origi-
nated from the TM0 mode barely move, while those from
the TM2 mode move toward lower frequencies. The high-
reflectance regions, as well as the phase in these regions,
move with those “grid lines.” For a certain SWG in the
high-reflectance region, for example, the point marked by a
white star in Fig. 2, the reflection phase could become very
different at oblique incidence angles.
Now we show a few examples of dispersion engineering

using SWGs. Two examples of SWGs are shown in
Fig. 3(a), whose reflection phases change significantly with
the incidence angle but in opposite ways. The reflection
phase of SWG1 increases by 0.35π from θ0 ¼ 0° to 22°,
while that of SWG2 decreases by 0.25π. In comparison, the
reflectance phase of the DBR mirror changes by 0.03π.

When using SWG1 and SWG2 as the top mirrors of
SWG-DBR cavities, the cavity dispersion also changes
drastically from that of the DBR-DBR cavity. As shown
in Fig. 3(b), the SWG1-DBR cavity has a much steeper
dispersion. Its resonance energy increases to 20 meV
above the DBR-DBR cavity’s resonance at θ0 ¼ 20°.
The SWG2-DBR cavity, on the other hand, features a
nearly flat dispersion up to k∥ ∼ 2 μm−1, or θ0 ∼ 15°.
If the bottom DBR is also replaced by an SWG [29], the

round-trip phase change is doubled, providing more tuning
of the cavity dispersion. Figure 3(c) shows that the
dispersion of the SWG1-SWG1 cavity becomes even
steeper, while the dispersion of SWG2-SWG2 cavity
reverses the sign and becomes negative. Moreover, dis-
persions of exotic shapes can also be created, such as the
one shown in Fig. 3(d), which features a double-well shape.
These special dispersions are also robust against

small variations in the grating parameters and, thus, are

FIG. 2 (color online). tg − ω maps of the reflectance [(a) and
(c)] and reflection phase [(b) and (d)] of an SWG with η ¼ 65%
for the TM polarization, under normal incidence [(a) and (b)] and
θ0 ¼ 30° oblique incidence [(b) and (d)]. The black dash-dotted
lines in (a) and (b) show the dual-mode regime defined by ωc2
and ωc4 obtained in Fig. 1(c). The dispersions of the dual WGA
modes are plotted as the two sets of white dashed and dash-dotted
lines in all four figures, using the approximated Fabry-Perot
resonance condition of βtg ¼ π. These lines overlap well with the
zero-reflectance (blue) stripes in (a) and (c). Broadband high-
reflectance regions (red) can be found between those lines. Each
point on the figure corresponds to one SWG design. An example
is marked by the whiteþ symbol, which has a phase shift of
∼0.4π over 30° while maintaining high reflectance (> 0.995).
The large phase shift is caused by the large WGA-mode shift, as
seen by comparing the dash-dotted white lines in (b) and (d).
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achievable with present fabrication technologies [32]. We
consider variations in the thickness tg by �5 nm due to
errors in the epitaxial growth, and in the period Λ and bar
width ηΛ by �2 nm due to the resolution of electron-beam
lithography. For the SWG1-DBR cavity, its effective mass
m� changes by less than 13%; hence, the steep dispersion is
well maintained. For the SWG2-DBR cavity, designed to
have a flat dispersion, the effective mass is reduced by
fourfold with a 2-nm increase in ηΛ, but remains heavier
than that of the DBR-DBR cavity. The variations due to
the e-beam resolution can be further reduced by using the

e-beam dose matrix to create SWGs with slightly varying Λ
and η. For the SWG3-SWG3 cavity, its resonance changes
by less than 0.3 meV, much less than the well depth of
∼4 meV; hence, the double-well shape is robust against the
fabrication errors.
Since dispersion is a fundamental property of a photonic

system, such tunability of the dispersion may enable many
novel applications. For example, it may be used to control
the propagation of light, since the group velocity of the
photon is proportional to dω=dk. A steeper or shallower
dispersion leads to faster or slower propagation of light.
A nearly flat dispersion may enable slow light and storage
of light in the cavity. Changing the dispersion also changes
the spontaneous decay rate of excitations enclosed
inside the cavity via Purcell enhancement or suppression
[36]. The Purcell factor is proportional to the energy DOS
of photons, which in turn depends on the effective mass
m� ≡ ℏ2ðd2E=dk2Þ−1 of the cavity modes, or the curvature
of the dispersion curve. A steep dispersion will suppress
spontaneous emission, while a flat dispersion would lead
to divergent DOS and a very high Purcell enhancement.
The SWG2-DBR cavity, for example, has an effective mass
m� ≈ −20 × 10−5me, more than six times heavier than the
DBR-DBR cavity’s effective mass of m� ≈ 3 × 10−5me. It
thus may allow a Purcell enhancement of sixfold compared
to a planar DBR-DBR cavity.
The proposed cavity structure can also be used in

polariton systems to control the properties of polariton
condensates and lasers [37,38], and to create novel many-
body systems. Unique to the proposed cavity, it simulta-
neous allows lossless integration of active media in the
cavity layer and a high cavity quality factor due to the high
reflectance of the SWG. A zero-dimensional polariton laser
was recently demonstrated in an SWG-DBR cavity [21]
with a cavity quality factor of a few thousands. All the
SWGs shown in Fig. 3 are optimized for high reflectance at
normal incidence, giving cavity Q > 104. At oblique
angles, their reflectance vary, but the cavity Q remains
above 103 up to θ ¼ �20° [39]. Hence the strong-coupling
regime should be readily reached when multiple quantum
wells are placed at the antinodes of these high-Q
cavities [40].
In the strong-coupling regime, the cavity dispersion is

directly transcribed to the polariton dispersion [41].
Changing the effective mass of the polariton, independent
of changing the exciton fraction in the polariton mode,
would allow one to control the dynamics and condensate
formation. Polariton systems with a lighter effective mass
without reduced exciton fraction, such as in the SWG1-
DBR cavity, may achieve a higher phase-space density at
lower excitation densities. They may enable polariton lasers
at an even lower threshold than that demonstrated in DBR-
DBR cavities [43–46], and may facilitate the BEC-BCS
crossover transition [47–49]. On the other hand, polaritons
with a heavy effective mass without reduced photon

FIG. 3 (color online). (a) Comparison of the angular depend-
ence of the reflection phase of two SWGs with a DBR. ϕ0

0 is the
shifted reflection phase that starts with zero at normal incidence.
(b) Energy dispersions of cavities with the SWGs and DBR as in
(a) as the top mirror and a bottom DBR with 30 λ=2 pairs. The
linewidths of the cavity resonances δðℏωÞ are shown as the
shades, to indicate the quality factors of the cavities Q ¼ ω=δω.
The linewidth corresponding to Q ¼ 103 is marked. The curva-
ture of dispersion is proportional to the effective mass defined
as m� ≡ ℏðd2ω=dk2Þ−1. We obtain at k∥ ∼ 0 an effective mass
m� ≈ 3 × 10−5me for the DBR-DBR cavity, whereme is the mass
of an electron. In comparison,m� ≈ 1 × 10−5me for SWG1-DBR,
m� ≈ −20 × 10−5me for SWG2-DBR. (c) Energy dispersions
of SWG1-SWG1 and SWG2-SWG2 cavities compared to the
DBR-DBR cavity, showing more substantial tuning of the
dispersion than in SWG-DBR cavities. At k∥ ∼ 0, we obtainm� ≈
0.3 × 10−5me for SWG1-SWG1, and m� ≈ −0.6 × 10−5me for
the SWG2-SWG2 cavity. (d) A double-well-shaped dispersion
for TM-polarized light in the SWG3-SWG3 cavity. The materials
used in the cavities are given in Sec. 2. All dimensions are scaled
to give a resonance of 1.55 eVat normal incidence. The structural
parameters are as follows: SWG1: Λ¼539 nm, tg¼350 nm,
η ¼ 0.31, transverse electric polarization; SWG2: Λ ¼ 328 nm,
tg ¼ 557 nm, η ¼ 0.65, TM polarization; SWG3: Λ ¼ 300 nm,
tg ¼ 584 nm, η ¼ 0.62, TM polarization.
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fraction, such as in the SWG2-DBR cavity, may allow rapid
thermalization of polaritons while maintaining robust
coherence. That may facilitate the formation of equilibrium
quantum phases in polaritons. Tuning the polariton
dispersion also tunes its group velocity, enabling, for
example, faster polariton transport within its short lifetime,
or slow light and slow polariton delay lines in optical and
polaritonic circuits [50]. Finally, the flexibility to create
dispersion of unusual symmetries may open a door to novel
physics. The double-well dispersion in the SWG3-SWG3
cavity may show spontaneous symmetry breaking when
particles relax from the metastable zero-k state to the two
degenerated ground states. It may also allow the observa-
tion of the Josephson effect in momentum space [51] and
may be extended to create systems with artificial magnetic
fields and topological states [4,12].
In short, we showed how to utilize the large angular

dependence of the reflection phase of SWGs to engineer the
dispersion of a vertical cavity. The cavity can retain a high
quality factor and is compatible with lossless integration of
active media. The curvature of the dispersion of SWG-
based cavities can be tuned by several orders of magnitude.
Even flat, inversed, or double-well-shaped dispersions can
be created. Such flexibility in dispersion engineering may
benefit many research areas such as Purcell enhancement in
2D structures, polariton-based lasers and quantum circuits,
and exotic quantum phases in polaritons.
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