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Ion Coulomb crystals are currently establishing themselves as a highly controllable test bed for
mesoscopic systems of statistical mechanics. The detailed experimental interrogation of the dynamics of
these crystals, however, remains an experimental challenge. In this work, we show how to extend the
concepts of multidimensional nonlinear spectroscopy to the study of the dynamics of ion Coulomb
crystals. The scheme we present can be realized with state-of-the-art technology and gives direct access
to the dynamics, revealing nonlinear couplings even in the presence of thermal excitations. We illustrate
the advantages of our proposal showing how two-dimensional spectroscopy can be used to detect
signatures of a structural phase transition of the ion crystal, as well as resonant energy exchange between
modes. Furthermore, we demonstrate in these examples how different decoherence mechanisms can be
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Two-dimensional (2D) spectroscopy was first proposed
and realized in the context of nuclear magnetic resonance
(NMR) experiments and has proven to be a very valuable
tool in the investigation of complex spin systems [1]. By
properly designed pulse sequences complicated spectra can
be unraveled by the separation of interactions originating
from different physical mechanisms to different frequency
axes. The method allows for the estimation of spin-spin
couplings in complex spin systems and the identification
of different sources of noise. 2D spectroscopy has been
adapted with remarkable success to other fields, facilitating
the investigation of anharmonic molecular vibrational spec-
tra in the infrared [2], electronic dynamics in molecular
aggregates [3] and photosynthetic pigment-protein com-
plexes [4], and photochemical reactions [5].

Here we propose and analyze the application of 2D
spectroscopy for the precise experimental characterization
of nonlinear dynamics in few- or many-body systems of
interest for quantum optics, in particular, in trapped-ion
Coulomb crystals. The excellent control over the internal
and motional degrees of freedom makes trapped atomic ions
[6] a versatile tool to study statistical mechanics of systems
in and out of equilibrium [7-9]. A paradigmatic example
is provided by the linear-to-zigzag structural transition
[10,11]. In the vicinity of the transition, the usual harmonic
treatment of the motion breaks down and nonlinear terms
in the potential are essential for understanding the dynamics
of the Coulomb crystal. Nonlinearities added to the trap
potential have also been proposed for the implementation of
the Frenkel-Kontorova model [12] and the Bose-Hubbard
model [13]. The scheme we present can be used for the
analysis of nonlinear dynamics, and, more generally, it
represents a new approach for the interrogation of complex
quantum systems constructed from ion crystals. Some
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features of 2D spectroscopy are especially appealing in this
context: it can provide information that is not accessible in
1D Ramsey-type experiments, it can filter out the contri-
bution from purely harmonic terms, and it allows us to
distinguish dephasing and relaxation due to environmental
dynamical degrees of freedom from fluctuations between
subsequent experimental runs. We note that, as opposed
to a related scheme [14], our proposal requires neither
the technically demanding individual addressing of ions
nor ground-state cooling. Furthermore, a purely harmonic
evolution produces no 2D spectroscopic signal in our
protocol [15]. We expect that these properties constitute
key elements for the investigation of nonlinear dynamics
in large crystals [23]. After a brief review of the general
formalism of 2D spectroscopy we illustrate its usefulness
in ion-trap experiments with two case examples.

2D spectroscopy [1-3].—After state initialization, a
general multidimensional spectroscopy experiment consists
of a sequence of n electromagnetic pulses on the system
under investigation separated by intervals of free evolution.
The action of the kth pulse on the system’s density matrix is
described by a superoperator P,. It is followed by a period of
time 7, in which the system evolves under a Hamiltonian H,
with an associated superoperator 4, and additional dis-
sipative processes described by fk resulting in a Lindblad
superoperator L, = —iH; — fk. The temporal variables ¢
are scanned over an interval [0, #7®*] and at the end of every
experiment an operator M is measured giving a signal

o) = Te[Mp(ty, ... 1,)], (1)

p([l’ [RE) tn) = eXp[Ln[n]Pn e eXp[thl]PlpO’ (2)

S(tl,

where py is the initial state and we assume for simplicity that
L, is time independent. The frequency-domain signal,
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which contains spectral information of the Liouvillians
governing the free evolution periods, is extracted by a
Fourier transform of the signal s(¢,, ..., #,) in one or several
time variables. A 2D spectrum displays the signal as a
function of two of the time or frequency variables.

In the implementation we propose, the pulses correspond
to phase-controlled displacements P;p = D(a)pD(a;)* on
one of the motional modes of the ion crystal. Here, D(ay ) =
explaga’ — aja] with o = |oy|e'?* and a the annihilation
operator of the mode. We consider sequences involving
four such pulses, followed by a measurement of the mode
population. For small o, the displacement operators can be
expanded in powers of ;. Using this expansion and phase
cycling, one can identify the coherence transfer pathways
that contribute to the final signal [1,15]. This allows for an
understanding of the physical origin of each spectral peak.

Nonlinear terms in the Coulomb interaction between
trapped ions.— We consider N singly chargedions of mass m
in a linear Paul trap described by an effective harmonic
confining potential. Taking into account the mutual Coulomb
repulsion between ions the Hamiltonian of the system reads

H Z ptzy + 1 L) + 1 Z 62 1 (3)
= — 4+ —mw;r; -y —_
- 2m 2 rop 2 £— 47T€0‘ri—r'|
iy i#j J
Here {®,},_,, . denote the trap frequencies, r;,(p;,) the

position (momentum) of ion i in spatial direction u, and ¢
the vacuum permittivity. If o, ®, > @_, cold ions arrange
on a string along the z axis and perform small oscillations
8y, (1) = 1y, (1) — 1)), about their equilibrium positions 7.
The Hamiltonian expanded to second order in 67, (¢) can be
diagonalized so that the motional degrees of freedom are

described by a set of 3N uncoupled harmonic oscillators:
H 0= h(oZZ(

Here, a, (b,, c,) denotes the annihilation operator formode n

yi‘la;an + \/};Zb;rzbn + ﬂizzcjlcn)' (4)

in the x(y, z) direction and A5 and 73" are the eigenvalues of
the Hessian matrices of the potential in the different spatial
directions. In each direction, n = 1 denotes the center-of-
mass mode and n = N the mode where neighboring ions
move in counterphase. In transverse directions this mode is
dubbed the zigzag (ZZ) mode.

We consider a linear chain along z with @, > @, and
focus on dynamics involving transverse motion in the x
direction. The first, nonlinear, corrections to H, arise with
the third [24] and fourth-order terms [15] in the Taylor
expansion of the Coulomb potential :

Dnmp

a,+ap)(an+ap)(c +01}),

Z pt (a, +a})(a, + an)
nm
- Nz

2(b, + b}) (b, + b))

2
Hw_3(@)
al;) " 2

8 {(ap + af,)(aq + aI,) N
8(c, + cI,)(cq + cg)]

ST

Here, zy = \/f/(2mw,) is the spread of the ground-state
wave function for the axial center-of-mass mode and

I.=[e?/(4meymw?)]'/? is the length scale of the inter-ion

(6)

spacing set by the axial trapping, while DE?,% » and DE:,‘% Pq
depend on the dimensionless equilibrium positions and
normal-mode coefficients. We report only terms involving
modes in the x direction [15].

Under typical operating conditions zo/4l, ~ 107> as w,
usually lies in the MHz range. This implies that third-order
contributions of the perturbation expansion represent small
corrections to the harmonic Hamiltonian H,,. However, the
trap frequencies can be tuned to resonances so that there
is coherent energy transfer between modes [24]. In this
regime, nonlinear terms cannot be neglected. We note that
such resonances become generic in systems with many
ions. Sufficiently far from resonances, the dominant effect
of the third-order terms is given by Kerr-type shifts of
the mode frequencies found in second-order perturbation
theory [25]. The fourth-order contributions in the Taylor
expansion of the Coulomb potential also result in such
shifts. Both contributions are smaller than the harmonic
terms by roughly a factor (zo/41,)* ~ 107°. These small
cross-Kerr nonlinearities can become important in quantum
information experiments where shifts of the order of
1-20 Hz were found to affect the achieved fidelity [26].
Moreover, fourth-order contributions of the Coulomb
potential are fundamental for the description of structural
transitions such as the linear-to-zigzag transition [10,11].

In the following, we analyze how to access the nonlinear
dynamics of the ions by means of 2D spectroscopy. To this
end we consider a linear string of N =3 ions, which
displays the essential characteristics of nonlinear mode
coupling, while the reduced complexity of the 2D spectra
facilitates their interpretation. With increasing system size
the linear spectrum becomes more crowded, resonances
may appear without being deliberately tuned, and ground-
state cooling of all modes becomes harder, thus making
cross-Kerr energy shifts more problematic. As 2D spec-
troscopy can deal with all of these problems it becomes
increasingly useful with increasing system size.

Signatures of the onset of a structural transition from 2D
spectroscopy.—The linear-to-zigzag transition occurs when
the confining potential in one radial direction is reduced
below a critical value at which the ions break out of the
linear structure. We consider a case in which the potential in
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the x direction is lowered approaching, but not crossing,
the linear-to-zigzag transition. On approach to the struc-
tural transition, the ZZ-mode frequency wzz = /75,0,
approaches zero as yj, goes to zero. This leads to an
increase of the fourth-order terms in Eq. (6) involving
77z The increase is fastest for the term whose coefficient

scales as 1 /y%z, which contains nonrotating terms o

(ay,)?a, and « aj,az;. The former corresponds to a
self-interaction of the ZZ mode, while the second term
shifts the ZZ mode frequency.

The effects of the third-order Hamiltonian Eq. (5) are
comparable to the contributions of the fourth-order terms,
but carry opposite signs so partial cancellations occur. In an

interaction picture with respect to the normal modes, we

obtain an effective Hamiltonian H f;f‘f) = H; + H, consist-

ing of the self-interaction (SI) part

Q
Ho= 0B, + omsily). )

and a dephasing part arising from cross-Kerr couplings:

Hy, = hal,az, <Qfl,2a;a2 + Y Q) bib, + Qfl_nclc,,)
n=23
(8)

The self-interaction strength is Qg; = 36(z,/ 4lz)2a)ZD§‘;)33 /
77> wWhile the dephasing rates Qg’n scale as 1/ \/@ [15].

In order to determine the self-interaction strength, we
consider a sequence of four small displacements on the ZZ
mode. A measurement of the ZZ-mode population com-
pletes the experimental cycle. We choose pathways carrying
the phase signature ¢, — ¢35 — ¢h4; two example coherence
transfer pathways are illustrated in Fig. 1. We are interested
in the dynamics during #; and #;. Our signal is given by
Egs. ()=(2) with M = a},az7, t, = t, = 0, a; = || e’
fork=1,2,3,4and ¢, = 0.

The practicality of our scheme is demonstrated by the
simulation of the measurement of Qg for a realistic
experimental setting using *’Ca* ions. The motional states
of the ions can be initialized close to their ground states by
Doppler and sideband cooling [27] and the displacements
of the modes can be implemented by state-dependent
optical dipole forces [28]. Our parameters, summarized
in Table I, are sufficiently far from the structural transition
so that a perturbative expansion remains valid and effective
cooling of the zigzag mode is still possible. We have not
taken into account the effect of micromotion [29] which
would lead to minor corrections of the entries of Table I
without affecting the general concepts presented here. In
Table I we also give the effective dephasing rates for our
choice of trap frequencies. For these parameters we expect
dephasing due to cross-Kerr couplings to be the dominant
source of noise, so we neglect heating in our simulations.

(a) (b)

oidag |In) (n]| ts =0 e=idag |In+1) (n+1]

7(wzz + 7LQSI) 7(“}22 + (n + 1)QSI)

eritsg |In+1) (n] In +2) (n+1lle"1*3q
eif2qt |0 +2) (nl| t2 =0 ¢iv2gt|In +2) (n|

7(wzz + anI) *(wzz + nSZSI)

o |In+1 () af |In+1) (n|
n) (n n) (n]
FIG. 1. Parts (a) and (b) show two example pathways carrying

the phase signature ¢, — ¢p; — ¢p4. Starting from a population all
pathways have to end in a population in order to be observable. In
paths (a) the coherences oscillate with the same frequency during
the evolution period #; as during #; thus giving rise to diagonal
peaks in the spectrum. In paths (b) the oscillation frequency
during #3 is shifted by —CQg; with respect to #; leading to off-
diagonal peaks below the main diagonal.

The main contributions to the dephasing originate from
the zigzag mode in the y direction and from the Egyptian
mode [15], which we include in the simulations. We make
Ny =4 phase cycles for each phase and take all
laz| = 0.25. We choose the initial state as a product of
thermal states for the modes with mean phonon numbers of
fizz = 1 for the zigzag and i = 4 for the other two modes.
The motional Hilbert spaces are truncated including nine
energy levels for the zigzag and 15 for the other two modes
which includes 99% and 97% of the respective populations.

The resulting 2D spectrum presented in Fig. 2 shows two
dominant lines: one along the principal diagonal, and one
shifted below it. The principal diagonal is due to coherence
transfer pathways where the coherences oscillate at the
same frequency during #; and t;. Example pathways are
given in Fig. 1(a). The off-diagonal line is due to paths
where the oscillation frequency during 75 is shifted by an
amount —€Qg; with respect to the first free evolution period
t,, exemplified in Fig. 1(b). Therefore, this line shift gives
direct access to the self-interaction strength Qg;. In sharp
contrast, a 1D-spectroscopy experiment with only one free
evolution period would yield the information obtained by
projecting the spectrum along one of the two frequency
axes, so that Qg could not be obtained (cf. Fig. 2). Note
that the coherence transfer pathways in Fig. 1 would give
rise to a series of separated peaks; dephasing due to thermal
occupation of the other modes blurs the maxima in the
diagonal direction producing the observed lines. All
modes, except for the center-of-mass modes, contribute
to this dephasing. Hence, by ground-state cooling of the
modes contributing to dephasing one would obtain sharp
and well-separated resonances in the spectrum. This,
however, is experimentally very demanding for large ion
crystals. Finally, we remark that phase fluctuations during
the pulse sequence do not pose a problem for our protocol
on the considered time scale. For the use of optical dipole
forces we estimate the loss in contrast due to laser phase
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TABLE 1. Simulation parameters for the 2D spectrum in Fig. 2. Definitions are given in the main text.
. /2x w,/2x w,/2n wyz /27 i, Aty Awzz/2n  Qg/2x Q)3/2n Q5/2x loy| Ny,
2 MHz 3.1012 MHz 5 MHz 13195kHz 2ms 253 pus 1520kHz 5.12kHz 058 kHz -137kHz 025 4

fluctuations to be as little as 1% for the signal of the
considered coherence transfer pathways [15].

Resonant energy exchange between normal modes
investigated by 2D spectroscopy.—As a further example
we consider a parameter regime where the fourth-order
terms are negligible and the dominant nonlinear effect in
the dynamics is coherent energy exchange between two
modes due to a resonance in the third-order Hamiltonian
H®). For a trap anisotropy (w,/w,)*> = 20/63 we obtain a
resonant coupling between the stretch mode ¢, = ¢, and
the zigzag mode, of the form [24]

3 T
ngs) - hQT {a%zcstr + (a;Z)zcstr]' (9)

For the subspaces with the lowest phonon numbers, the
eigenvectors and eigenvalues of HESQ can be found analyti-
cally [15]; eigenvalues for higher occupation numbers may
be found numerically. We emphasize that a Hamiltonian up
to third order is an approximation valid only for low numbers
of excitations, and fourth-order terms are necessary to
guarantee a lower-bounded energy spectrum.

For an axial frequency w,/27 =2 MHz we obtain a
coupling Qp/27 =5.9 kHz. The nonlinear dynamics

0.04
IS (w1, ws)]
0.4
~ 0.3
jan}
=)
=
< 0.2
0 0.1

= -10 0 10
wy /27 (kHz)

FIG. 2 (color online). The central plot shows the 2D spectrum
|S(w;, w3)| = |F(s(t1,t3))| obtained by a four-pulse sequence
with the simulation parameters given in Table I, including up
to fourth-order terms in the Hamiltonian, in the neighborhood
of the linear-to-zigzag transition. The diagonal peaks are due to
paths of type (a) in Fig. 1. They are blurred because of static
dephasing caused by thermal populations of the spectator
modes leading to the diagonal line. The dominant off-diagonal
[paths (b) in Fig. 1] is shifted by —Qg; along the w5 axis and
can thus be used to infer the self-interaction of the zigzag
mode. The small plots along ;;; show the spectra obtained
by integrating along the other frequency direction. This is the
result that would be obtained by a 1D experiment with only
one free evolution period [S(@;/3)| = |S(@;3.13,1 = 0)].

induced by HE;) can be probed in a 2D experiment with
the same pulse sequence as described before, i.e.,
lay| = 0.25, N;, = 4 and 1173 =2 ms, reducing the time
increment to Atzy/3 = 10.6 us. For our simulation param-
eters, dephasing due to other modes is negligible and the
dominant source of decoherence is expected to be heating
of the motional modes. Accordingly, we model the
modes as damped harmonic oscillators coupled to thermal
reservoirs at room temperature and assume heating rates
iizy Jse = 0.2/0.1 quanta ms™!, a conservative estimate for
macroscopic traps [27]. Furthermore, we take the initial
state to be a product of thermal states with residual phonon
occupation numbers 77z, = 0.7/0.2. The Hilbert spaces
are truncated at six and nine excitations for the stretch and
zigzag modes, respectively, thus leaving out a fraction of
10~ of the populations.

The resulting spectrum shown in Fig. 3 shows two bright
peaks above and below the central peak, which correspond

to pathways starting in the ground state. Their vertical

coordinates are shifted by j:\/EQT, the eigenvalues of H EQ )

for the lowest levels showing coherent energy transfer
between the two modes. All peak coordinates are shifted
with respect to —wy; by an eigenvalue of HE;) or a linear
combination thereof, from which further eigenvalues can

be inferred [15]. The figure clearly shows homogeneous

| F(s(t1,t3))]

10
= 8
=
[
g 6
3
T 4
o
3

2

—15 0 15
(w1 + wyy) /27 (kHz)

FIG. 3 (color online). 2D spectrum due to the resonant third-
order terms HESQ, Eq. (9), in the Coulomb potential. Simulation
parameters are given in the main text. A strong peak at
w, = w3 = —wzz was removed from the spectrum for clarity.

Eigenvalues of H, 5;) for low phonon numbers are identified and

the effect of homogeneous broadening is clearly visible as
broadening of the peaks in vertical and horizontal directions.
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broadening of the peaks along the frequency axes due to the
coupling to the thermal reservoirs. This illustrates how 2D
spectroscopy allows for a distinction between homogeneous
and inhomogeneous broadening, since the latter leads to
broadening of the peaks along the diagonal as in Fig. 2.
In summary, we have shown how to extend 2D spectros-
copy for the investigation of nonlinear dynamics of crystals
of trapped ions. The method offers significant advantages: it
does not produce any signal for purely harmonic evolution
and it allows for the separation of signals which would
appear superposed in a linear spectrum. It also facilitates
the characterization of noise in the system: while effective
static disorder gives rise to diagonal lines, dephasing and
heating occurring during each experimental run manifest
in broadening in the horizontal and vertical directions.
Furthermore, the protocol does not require ground-state
cooling, a feature which is particularly appealing for the
study of large ion crystals. Note that it is well known how to
achieve significant reductions in the number of measure-
ments required to obtain 2D spectra by employing tech-
niques from the field of matrix completion [30]. The 2D
spectroscopy methods presented here form a versatile new
diagnostic toolbox that may be applied well beyond the two
case studies discussed here to cover all many-body models
that may be realized in ion traps including spin models,
structural dynamics of large ion crystals, and models in
which spin and vibrational degrees of freedom are coupled.
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