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We apply maximally helicity violating (MHV) diagrams to the derivation of the one-loop dilatation
operator ofN ¼ 4 supersymmetric Yang-Mills theory in the SO(6) sector. We find that in this approach the
calculation reduces to the evaluation of a single MHV diagram in dimensional regularization. This provides
the first application of MHV diagrams to an off-shell quantity. We also discuss other applications of the
method and future directions.
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Introduction.—The study of N ¼ 4 supersymmetric
Yang-Mills (SYM) theory has led to the discovery of
integrability in the planar limit, providing the tools to
compute the anomalous dimensions of local operators for
any value of the coupling. In an initially independent line of
research into this theory, the study of its on-shell scattering
amplitudes has uncovered a rich structure and simplified
calculations dramatically. It is widely expected that the
integrability of the planar anomalous dimension problem
and the hidden structures and symmetries of scattering
amplitudes are related in some interesting way. In this
Letter we take a first step towards unraveling this potential
connection.
Specifically, our goal here is to apply a method originally

devised for computing amplitudes known as MHV dia-
grams [1] to the derivation of the one-loop dilatation
operator Γ in the SO(6) sector of N ¼ 4 SYM theory,
originally computed by Minahan and Zarembo (MZ) in [2].
It is known that MHV diagrams are obtained from a
particular axial gauge choice, followed by a field redefi-
nition [3,4]; hence, the validity of the method not only
applies to on-shell amplitudes, but also to off-shell quan-
tities such as correlation functions. This paper provides
the first application of the MHV diagram method to the
computation of correlation functions.
There are several reasons to pursue an approach based

on MHV diagrams. First, it is interesting to consider the
application of this method to the computation of fully off-
shell quantities such as correlation functions. Second, in the
MHV diagram method there is a natural way to regulate the
divergences arising from loop integrations, namely, dimen-
sional regularization, used in conjunction with the four-
dimensional expressions for the vertices. In this respect,
we recall that one-loop amplitudes were calculated with
MHV diagrams in [5], where the infinite sequence of MHV
amplitudes inN ¼ 4 SYM theory was rederived. One-loop
amplitudes in N ¼ 1 SYM theory were subsequently
computed in [6,7], while in [8] the cut-constructible part

of the infinite sequence of MHV amplitudes in pure
Yang-Mills theory at one loop was presented. The N ¼ 1
and N ¼ 0 amplitudes have ultraviolet (UV) divergences
(in addition to infrared ones), which are also regulated in
dimensional regularization. The two-point correlation func-
tion we compute in this Letter also exhibits UV divergen-
ces, which we regulate in exactly the same way as in the
case of amplitudes. The reader may consult [9,10] for
further applications of the MHV diagram method to the
calculation of loop amplitudes.
An additional motivation for our work is provided by

the interesting recent papers [11,12]. In particular, [11]
successfully computed Γ using N ¼ 4 supersymmetric
twistor actions [13–15]. It is known that such actions,
in conjunction with a particular axial gauge choice,
generate the MHV rules in twistor space [14], and the
question naturally arises as to whether one could derive
the dilatation operator directly using MHV diagrams in
momentum space, without passing through twistor space.
The answer to this question is positive, and furthermore
we find that the calculation is very simple—it amounts to
the evaluation of a single MHV diagram in dimensional
regularization, leading to a single UV-divergent integral,
identical to that appearing in [2].
The rest of the Letter is organized as follows. In the next

section we briefly review the result of [2] for the integrable
Hamiltonian describing the one-loop dilatation operator Γ
in the SO(6) sector. In Sec. 3 we address the calculation of
Γ using MHV diagrams. We present our conclusions and
suggestions for future research in Sec. 4.
The one-loop dilatation operator.—The computation of

the dilatation operator in the SO(6) sector of the N ¼ 4
SYM theory is equivalent to extracting the UV-divergent
part of the two-point function hOðx1ÞŌðx2Þi, where O is a
single-trace scalar operator of the form

OA1B1;A2B2;…;ALBL
ðxÞ≔TrðϕA1B1

ðxÞ � � �ϕALBL
ðxÞÞ: ð2:1Þ
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At one loop and in the planar limit, only nearest neighbor
scalar fields can be connected by vertices. This simplifies
the calculation to that of hðϕABϕCDÞðx1ÞðϕA0B0ϕC0D0 Þðx2Þi.
The expected flavor structure of this correlation function is

hðϕABϕCDÞðx1ÞðϕA0B0ϕC0D0 Þðx2Þi
¼ AϵABCDϵA0B0C0D0 þ BϵABA0B0ϵCDC0D0 þ CϵABC0D0ϵA0B0CD:

ð2:2Þ

These three terms are usually referred to as trace, permu-
tation, and identity. We are only interested in computing the
leading UV-divergent contributions to the coefficients A,
B, and C, which, according to [2], are expected to be
[in the definitions of AUV, BUV, and CUV we omit a factor
of λ=ð8π2Þ × ½1=ð4π2x212Þ�2 × ð1=ϵÞ].

AUV ¼ 1

2
; BUV ¼ −1; CUV ¼ 1: ð2:3Þ

This leads to the famous result of [2] for the one-loop
dilatation operator Γ in the SO(6) sector,

Γ ¼ λ

8π2
XL

n¼1

�
1 − Pn;nþ1 þ

1

2
Trn;nþ1

�
; ð2:4Þ

where P and Tr are the permutation and trace operators,
respectively. L is the number of scalar fields in the operator,
and λ the ’t Hooft coupling.
In the MZ calculation, one particular integral plays a

central role, depicted in Fig. 1. It is given by

Iðx12Þ ¼
Z

dDzΔ2ðx1 − zÞΔ2ðx2 − zÞ; ð2:5Þ

where x12≔x1 − x2 and

ΔðxÞ≔−
π2−ðD=2Þ

4π2
Γ
�
D
2
− 1

�
1

ð−x2 þ iεÞðD=2Þ−1 ; ð2:6Þ

is the scalar propagator in D dimensions. Note that Iðx12Þ
has UV divergences arising from the regions z → x1
and z → x2.

Because the MHV diagram method is formulated in
momentum space, it is useful to recast Iðx12Þ as an integral
in momentum space. Doing so, one finds that

Iðx12Þ ¼
Z Y4

i¼1

dDLi

ð2πÞD
eiðL1þL2Þx12

L2
1L

2
2L

2
3L

2
4

ð2πÞDδðDÞ
�X4

i¼1

Li

�

¼
Z

dDL
ð2πÞD e

iLx12

×
Z

dDL1

ð2πÞD
dDL3

ð2πÞD
1

L2
1ðL−L1Þ2L2

3ðLþL3Þ2
; ð2:7Þ

where L≔L1 þ L2. The integral over L1 and L3 is the
product of two bubble integrals with momenta as in Fig. 2,
which are separately UV divergent. These divergences arise
from the region L1, L3 → ∞. The leading UV divergence
of (2.7) is equal to

Iðx12ÞjUV ¼ 1

ϵ

1

8π2
1

ð4π2x212Þ2
: ð2:8Þ

The one-loop dilatation operator from MHV rules.—
In this section we compute the UV-divergent part of the
coefficients A, B, C defined in (2.2), representing the trace,
permutation, and identity flavor structures, respectively. In
order to compute these three coefficients, it is sufficient to
consider one representative configuration for each one. We
will choose the following helicity [or SU(4)] assignments:

ABCD A0B0C0D0

Tr 1234 2413

P 1213 3424

1 1213 2434

ð3:1Þ

There is a single MHV diagram to compute, represented in
Fig. 3. It consists of one supersymmetric four-point MHV
vertex,

VMHVð1; 2; 3; 4Þ ¼
δð4ÞðP4

i¼1 LiÞδð8Þð
P

4
i¼1 liηiÞ

h12ih23ih34ih41i ; ð3:2Þ

and four scalar propagators 1=ðL2
1 � � �L2

4Þ connecting it to
the four scalars in the operators. Here Li are the (off-shell)
momenta of the four particles in the vertex. The off-shell

FIG. 1. The particular one-loop integral in configuration space
contributing to the dilatation operator.

FIG. 2. The double-bubble integral relevant for the computation
of Iðx12Þ.
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continuations of the spinors associated to the internal legs
are defined using the prescription of [1], namely,

liα≔Liα _αξ
_α: ð3:3Þ

Here, ξ _α is a constant reference spinor. As we mentioned
earlier, MHV diagrams were derived in [3,4] from a change
of variables in the Yang-Mills action quantized in the light
cone gauge. The spinor ξ _α is precisely related to this gauge
choice. Next we extract the relevant component vertices
for the three flavour assignments in (3.1). These turn out
to be as follows:

Tr∶
h13ih24i
h12ih34i ;

P∶ − 1;

1∶
h13ih24i
h23ih14i : ð3:4Þ

Hence, in the case of P the resulting loop integral is
precisely the double-bubble integral Iðx12Þ of (2.7) (up to
a sign), while in the other two cases the double-bubble
integrand is dressed with the vertex factors in (3.4). In the
following we discuss the additional contributions from the
vertex for the three configurations Tr, P, and 1.
The Tr integrand.—We begin our analysis with the

vertex factor for the trace configuration, first line of
(3.4). Using the off-shell prescription for MHV diagrams
we can rewrite it as

T≔
½ξjL1L3jξ�½ξjL2L4jξ�
½ξjL1L2jξ�½ξjL3L4jξ�

: ð3:5Þ

Using momentum conservation to eliminate L2 and L4, this
can be recast as a sum of three terms,

T ¼ −
½ξjL1L3jξ�
½ξjL3Ljξ�

−
½ξjL1L3jξ�
½ξjL1Ljξ�

−
½ξjL1L3jξ�2

½ξjL1Ljξ�½ξjL3Ljξ�
;

ð3:6Þ

where L≔L1 þ L2. The first two terms correspond to linear
bubble integrals in L1 and L3, respectively. We will study
separately the contribution arising from the last term. The
linear bubble integral is

Z
dDK
ð2πÞD

Kμ

K2ðK � LÞ2 ¼ ∓Lμ

2
BubðL2Þ; ð3:7Þ

where

BubðL2Þ≔
Z

dDK
ð2πÞD

1

K2ðK þ LÞ2 : ð3:8Þ

This is one of the two scalar bubbles comprising the MZ
integral of Fig. 2. In the following we will then only quote
the coefficient dressing the MZ integral. Doing so, the first
term in (3.6) becomes, after the reduction,

−
½ξjLL3jξ�
½ξjL3Ljξ�

1

2
¼ 1

2
: ð3:9Þ

Similarly, the second term in (3.6) gives a result of þ1=2.
Next, we move to the third term. To simplify its expression,
we first notice that the bubble integral in L1 is symmetric
under the transformation L1 → L − L1. The idea is then
to simplify the integrand by using this symmetry. Thus,
we rewrite the quantity ½ξjL1L3jξ� in the numerator
as ½ξjL1L3jξ� ¼ ½ξjðL1 − 1

2
LÞL3jξ� þ 1

2
½ξjLL3jξ�. Doing so,

we get

−
½ξjL1L3jξ�2

½ξjL1Ljξ�½ξjL3Ljξ�
¼ −

½ξjðL1 − L
2
ÞL3jξ�2

½ξjL1Ljξ�½ξjL3Ljξ�
þ 1

4

½ξjLL3jξ�
½ξjL1Ljξ�

þ ½ξjðL1 − 1
2
LÞL3jξ�

½ξjL1Ljξ�
: ð3:10Þ

We then notice that the first and the second term are
antisymmetric under the transformation L1 → L − L1 and
hence vanish upon integration. The third term is a sum of
two linear bubbles in L3, and the corresponding contribu-
tions are quickly seen to be equal to −1=2 and zero,
respectively.
Summarizing, the trace integral gives a contribution

of 1=2 times the dimensionally regularized MZ integral.
Thus, AUV ¼ 1=2.
The P integrand.— In this case the vertex is simply −1

and the corresponding result is −1 times the MZ integral,
or BUV ¼ −1.
The 1 integrand.—The relevant vertex factor is written

in the third line of (3.4). In this case we observe that

h13ih24i
h23ih14i ¼ 1þ h12ih34i

h23ih14i : ð3:11Þ

The first term gives a contribution equal to the MZ integral,
and we will now argue that the second term is UV finite,

x
1

x
2

L
1

L
2

L
3

L
4

FIG. 3. The single MHV diagram contributing to the dilatation
operator at one loop.
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and hence does not contribute to the dilatation operator.
Indeed, we can write

h12ih34i
h23ih14i ¼

½ξjL1Ljξ�½ξjL3Ljξ�
½ξjðL − L1ÞL3jξ�½ξjL1ðLþ L3Þjξ�

: ð3:12Þ

The UV divergences we are after arise when L1 and L3 are
large. The integrand (3.12) provides one extra power of
momentum per integration, which makes each of the two
bubbles in the MZ integral finite. (One may also notice that
for large L1 and L3 the integrand becomes an odd function
of these two variables, and thus the integral should
be suppressed even further than expected from power
counting.) Thus. CUV ¼ 1.
We end this section with a couple of comments. 1. Since

MHV diagrams are obtained from a particular axial gauge
choice, combined with a field redefinition [3,4], it is
guaranteed that ξ dependence drops out at the end of the
calculation. In the present case one can see this directly
as follows. Lorentz invariance ensures that the result of
the L1 and L3 integrations can only depend on L2, as the
other Lorentz-invariant quantity ½ξjL2jξ� vanishes (note that
Lξ cannot appear as our integrands only depend on the
antiholomorphic spinor ξ _α). 2. We point out that in the
MHV diagram formalism there are no self-energy correc-
tions to the propagator, as already observed in Sec. 6
of [5]. Presumably this is also the case for the self-energy
evaluated with the twistor action of [14] employed in [11]
for the calculation of the one-loop dilatation operator.
It is interesting to note that the superfield renormalization
in the light cone gauge formalism of [16] is finite in the
N ¼ 4 theory.
Conclusions.—We conclude with some suggestions

for future investigations. First, it would be interesting to
apply MHV diagrams to the calculation of the dilatation
operator in other sectors of N ¼ 4 SYM theory, also
containing fermions and derivatives. Applications to differ-
ent Yang-Mills theories with less supersymmetry can
also be considered, given the validity of the MHV diagram
method beyond N ¼ 4 SYM theory.
An obvious goal is the extension of our calculation to

higher loops. This has proved difficult for amplitudes, but
addressing the calculation of just the UV-divergent part of
the two-point correlation function may simplify this task
enormously. At one loop the complete dilatation operator is
known [17], while direct perturbative calculations at higher
loops—without the assumption of integrability—have been
performed only up to two [18–20], three [21–23], and
four loops [24] in particular sectors. A simplified route to
such a calculation would be greatly desirable, and would
provide further verification of this crucial assumption.
The expected structure remains that of (2.7), with the
double-bubble integral replaced by more complicated (but
still single-scale) loop integrals.

It would also be very interesting if one could apply other
on-shell methods such as generalized unitarity [25,26] to
the direct calculation of two-point functions, and hence to
the dilatation operator of N ¼ 4 SYM theory.
Finally, our result hints at a link between the Yangian

symmetry of amplitudes in N ¼ 4 SYM theory[27] and
integrability of the dilatation operator of the theory
[2,17,28–31]. It would be interesting to explore this point
further. We hope to be able to report on some of these ideas
in the very near future.
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