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The quantum theory of fields is largely based on studying perturbations around noninteracting, or free,
field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum
theory of an ordinary fluid is “freer”, in the sense that the noninteracting theory also contains an infinite
collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of
correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be
consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is
radically different from both classical fluids and quantum fields.
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Fluids are ubiquitous in everyday life and were, argu-
ably, the prototypical example of a classical field theory in
physics. As such, it is natural to want to quantize them, as
we have successfully done with many other classical fields.
Since fluid behavior is known to arise in systems with very
different microscopic constituents, we expect that, at best,
such a theory will take the form of a nonrenormalizable,
effective field theory (EFT), valid only at large enough
distance and time scales, and the goal is to show that such a
description exists.
In trying to do so, one immediately encounters an

obstruction in the form of fluid vortices, which, classically,
can have arbitrarily low energy, irrespective of their spatial
extent [1]. As we shall see below, this means that these
excitations behave nothing like the infinite collection of
harmonic oscillators that are the usual starting point for
quantum field theory (QFT); instead, they behave like a
collection of quantum-mechanical free particles.
Landau, who was one of the first to attack the problem,

tried to bypass the obstruction by arguing [2,3] that the
vortex modes should be gapped in the quantum theory. In
doing so, he stumbled not upon a quantum theory of fluids
but rather upon the theory of superfluids.
More recently, Endlich et al. [4] conjectured that it is

impossible to quantize fluids. If true, this explains at a stroke
why, in all known real-world examples, fluid behavior does
not persist to arbitrarily low temperatures (e.g., H2O freezes
and He becomes superfluid): Quantum effects must pre-
dominate eventually, and so any classical fluid must change
its phase before this happens. The conjecture was supported
by computations of S-matrix elements for a putative quan-
tum fluid, many of which turned out to diverge, apparently
making the “theory” useless [5].
Here, we make a different conjecture, which is that

quantum fluids are consistent but that the peculiarities of
quantum mechanics make their phenomena completely
different from those of classical fluids. If true, there might
already exist real-world examples of quantum fluids, without

us even realizing it. We support our conjecture by computing
various correlation functions (“correlators”) at tree and loop
level and showing that they are well behaved.
Our formulation of the problem largely follows that of

Ref. [4], except that we work in ð2þ 1ÞD spacetime, where
we find a number of technical simplifications. (There is
no obstruction to carrying out the same calculations for
ð3þ 1ÞD fluids, however, and we conjecture that these are
also consistent.) The key point of departure with Ref. [4] is
that we assert that, in a general physical theory, only
quantities that are invariant under the symmetries of the
theory are observable [6]. This is a tautology, once we
define the symmetries of a theory as those transformations
that leave a system unchanged and hence are unobservable.
There are, of course, plenty of examples in physics where
we can consistently compute noninvariants and use these
as proxies for observables, but there are also plenty of
examples where we cannot: Gauge theories and 2D sigma
models are well-known examples. The S-matrix elements
in these examples suffer from infrared (IR) divergences that
cancel when one computes correlators of invariants, viz.
observables. Although we are unable to give a general
proof, we will give multiple examples where the same
happens for fluids.
Good IR behavior alone does not suffice to establish

consistency of the theory, however. Just like in ordinary
QFT, there are also ultraviolet (UV) divergences, coming
from loop diagrams, and these must also be cancellable.
Since the theory is nonrenormalizable, this requires, in
general, an infinite tower of counterterms coming from an
expansion of the Lagrangian in operators of increasing
powers of energy and momentum. This expansion will only
“converge” in some region of low energies and momenta,
outside of which predictivity is necessarily lost. To establish
consistency, we must show that such a region exists. Again, a
general proof is beyond us, but we do show, by a direct loop
computation in a simple example, that the necessary UV
cancellations occur and that there exists a region of energies
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and momenta where the expansion appears to be valid. We
then speculate briefly on the implications.
Fluid parameterization.—We begin by discussing how

to parameterize a fluid and its dynamics. In the Eulerian
frame, a fluid is a time-dependent map ϕiðxj; tÞ from some
space manifold M (which we take to be R2) into itself. We
suppose that cavitation or interpenetration of the fluid costs
finite energy and may be ignored in our EFT description,
such that ϕ is 1 to 1 and onto. Moreover, we assert that, by
altering ϕ at short distances, we can make it and its inverse
smooth [7], such that ϕ is a diffeomorphism, and the
configuration space of the fluid is the diffeomorphism
group DiffðMÞ. We thus seek a parameterization of this
group. DiffðMÞ is infinite dimensional and so is not a
Lie group in the usual sense; the exponential map does not
necessarily exist for noncompact M, and even for compact
M it may not be locally onto [indeed, DiffðRÞ and DiffðS1Þ
are respective counterexamples [8]]. So, using the naïve
exponential map given in Ref. [4] [which can be written as
ϕðxÞ ¼ xþ π þ ð1=2!Þπ⋅∂π þ ð1=3!Þπ⋅∂ðπ⋅∂πÞ þ � � �] is
not necessarily adequate, even for small fluctuations. We

therefore use the simple parameterization ϕ ¼ xþ π (where
x is the identity map on M) and hope that all of the
aforementioned demons are of measure zero in the path
integral.
As for the dynamics, to have any chance of a quantum

description requires nondissipative behavior, so we assume
the fluid to be perfect [9]. The corresponding action
has been known for a long time [10]. It is most easily
derived by requiring [4] that the theory be invariant under
Poincaré transformations of x [11] and area-preserving
diffeomorphisms of ϕ. In ð2þ 1ÞD, the Lagrangian is
L ¼ −w0fð

ffiffiffiffi

B
p Þ, where B ¼ det ∂μϕ

i∂μϕj, f is any func-
tion such that f0ð1Þ ¼ 1, and w0 sets the overall dimension.
Our metric is mostly plus, and ℏ and the speed of light
are set to unity. One may easily check that conservation
of the energy-momentum tensor Tμν¼ðρþpÞuμuνþpημν
(which for a fluid is equivalent to the Euler-Lagrange
equations [12]) holds with ρ ¼ w0f, p ¼ w0ð

ffiffiffiffi

B
p

f0 − fÞ,
and uμ ¼ 1

2
ffiffiffi

B
p ϵμαβϵij∂αϕ

i∂βϕ
j. In terms of ϕi ¼ xi þ πi,

we have

L ¼ 1

2
ð _π2 − c2½∂π�2Þ − ð3c2 þ f3Þ

6
½∂π�3 þ c2

2
½∂π�½∂π2� þ ðc2 þ 1Þ

2
½∂π� _π2 − _π⋅∂π⋅ _π −

ðf4 þ 3c2 þ 6f3Þ
24

½∂π�4

þ ðc2 þ f3Þ
4

½∂π�2½∂π2� − c2

8
½∂π2�2 þ ð1 − c2Þ

8
_π4 − c2½∂π� _π⋅∂π⋅ _π −

ð1 − 3c2 − f3Þ
4

½∂π�2 _π2 þ ð1 − c2Þ
4

½∂π2� _π2

þ 1

2
_π⋅∂π⋅∂πT ⋅ _π þ � � � ; ð1Þ

where fn ≡ dnf=d
ffiffiffiffi

B
p

njB¼1, c≡ ffiffiffiffiffi

f2
p

is the speed of
sound, and ½∂π� is the trace of the matrix ∂iπj, etc. The
obstruction to quantization is now evident: Fields π with
½∂π� ¼ 0, corresponding to transverse fluctuations (or
infinitesimal vortices), have no gradient energy and corre-
spond to quantum-mechanical free particles, rather than
harmonic oscillators. Thus, the energy eigenvalues are
continuous, and there can be no particle interpretation
via Fock space. Even worse, the ground state is completely
delocalized in π, meaning that quantum fluctuations sample
field configurations where the interactions are arbitrarily
large. It thus appears that perturbation theory is hopeless.
From the path-integral point of view, these difficulties
translate into the statement that the spacetime propagator
for transverse modes is ill defined, since it contains the
Fourier transform

R

dωeiωt=ω2, which diverges in the IR.
Infrared behavior.—Just as for gauge theories and 2D

sigma models [13–18], the IR divergences cancel when we
restrict to correlators of invariants under SDiffðMÞ, such as
ρ, p, and ui [19]. We can check the cancellation order by
order in 1=w0 (which is equivalent to the usual ℏ expansion
of QFT) or indeed in any other parameter.
For the two-point correlators at Oðw−1

0 Þ, the observables
can be expressed in terms of ½∂π� and _π, whose correlators are

h½∂π�½∂π�i ¼ ik2

ω2 − c2k2
;

h _πi½∂π�i ¼ iωki

ω2 − c2k2
;

h _πi _πji ¼ iδij þ ic2kikj

ω2 − c2k2
: ð2Þ

The only poles are atω ¼ ck, and the disappearance of poles
at ω ¼ 0 implies that the spacetime Fourier transforms are
well defined.
To check for cancellations of IR divergences at higher

order in w−1
0 , it is convenient to consider the invariants

ffiffiffiffi

B
p

u0 − 1 ¼ ½∂π� þ 1

2
ð½∂π�2 − ½∂π2�Þ;

ffiffiffiffi

B
p

ui ¼ _πi þ ½∂π� _πi − _πj∂jπ
i; ð3Þ

since [in ð2þ 1ÞD] they contain terms of at most quadratic
order in π. Consider, for example, the three-point correlator
h ffiffiffiffi

B
p

uiðx1; t1Þ
ffiffiffiffi

B
p

ujðx2; t2Þ½
ffiffiffiffi

B
p

u0ð0; 0Þ − 1�i at Oðw−2
0 Þ,

connected with respect to the three observables. The four
contributing diagrams and their divergent pieces are
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where ðka;ωaÞ; a ∈ f1; 2g are the Fourier conjugates of
(xa, ta), ω3 ¼ ω1 þ ω2, etc. We define the transverse
projector by Tij

a ≡ δij − ðkiakja=k2aÞ. Groups of k’s or T’s
in brackets have their indices contracted. It is clear that,
by expansion about small ω2, 1=ðω2

3 − c2k23Þ ¼ 1=ðω2
1 −

c2k23Þ þOðω2Þ and the above poles at ω2 ¼ 0 cancel. By
symmetry, the same is true for ω1.
One may similarly show that divergences cancel in all

three-point correlators of the observables in (3). We have
also checked several four-point tree-level correlators.
Ultraviolet behavior.—We now turn to loop diagrams.

Consider, for example, the two-point function of
ffiffiffiffi

B
p

u0 − 1
at Oðw−2

0 Þ. The diagrams, shown in Fig. 1, feature both IR
and UV divergences, which we regularize by computing
the integrals in D ¼ 1þ 2ϵ time and d ¼ 2þ 2ϵ space
dimensions. We wish to show that the UV divergences can
be absorbed in higher order counterterms and that the
expansion in energy and momenta is valid in some non-
vanishing region.
It is here that the advantage of working in ð2þ 1ÞD

becomes clear: If the theory is to be consistent, the sum of
the individually divergent diagrams in Fig. 1 must be finite
as ϵ → 0, because there can be no counterterms. This
follows from simple dimensional analysis: The Feynman
rules that follow from (1) imply that the one-loop diagrams
must contain three more powers of energy or momentum
than the tree-level diagrams. Now, since the correlator can
only be a function of K2 (where icK ≡ ω) and k2 (by time-
reversal and rotation invariance, respectively), the one-loop
contribution necessarily contains radicals of K2 and k2.
But higher order counterterms can yield only tree-level

contributions that are rational functions of K2 and k2 and so
cannot absorb divergences in the one-loop contribution.
To do the computation, we use integration-by-parts

identities obtained by using AIR [20] to reduce the various
loop integrals to a set of nine master integrals, listed in
Ref. [21]. All but the last two of these can be evaluated
directly, in terms of Gamma or hypergeometric functions.
For the remaining two, we proceed by deriving a first-order
ordinary differential equation for each integral’s depend-
ence on K2 and solving order by order in ϵ. All the integrals
were checked numerically in dimensions where they are
finite. Substituting in the loop amplitude using FORM [22],
we obtain

9Kk6ð1þ c4Þ
64ðK2 þ k2Þ2 −

k4

1024c4ðK2 þ k2Þ5=2
× ½c4ð1 − c2Þ2ð19k4 − 4K2k2 þ K4Þ
− 2f3c2ð1þ c2Þk2ð5k2 þ 14K2Þ
þ f23ð3k4 þ 8K2k2 þ 8K4Þ�;

which is indeed finite, as consistency demands. Moreover,
there are no poles at K ¼ 0 and the Fourier transform is
well defined.
Finally, we estimate the region of validity of the EFT

expansion in energy-momentum, by comparing the abso-
lute values of the tree-level and one-loop results. Our
estimate depends, of course, on the values of the Oð1Þ
coefficients c2 and f3, and we present results for typical
values (in units of the overall scale w0) in Fig. 2. It should
be borne in mind that this really constitutes only a rough
upper bound on the region of validity; in particular, we
expect that comparison of other diagrams will indicate
that the EFT is not valid at arbitrarily large energy, for
small enough momentum (and vice versa), as the figure
suggests.
Discussion.—Our results are a strong hint that there

exists a consistent quantum theory of fluids. If so, it is of
great interest to explore the physical predictions of the
theory and to see whether they are realized in real-world

FIG. 1. The Oðw−2
0 Þ diagrams for the correlator hð ffiffiffiffi

B
p

u0 − 1Þ
ð ffiffiffiffi

B
p

u0 − 1Þi.
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systems. We can already draw some inferences from the
results derived here. The first of these is that Lorentz
invariance is nonlinearly realized in the quantum vacuum,
just as it is in a classical fluid. This follows immediately
from the occurrence of poles at ω ¼ ck in the two-point
correlators (2). Furthermore, the linearly realized sym-
metries appear to be the same in the quantum theory as in
the classical theory, viz. the diagonal Euclidean subgroup
of Poincare ́ × SDiff. The second is that vortex modes
apparently do not propagate, in the sense that they do not
appear as poles in correlators of observables. In hindsight,
this is no surprise, since propagating vortices would imply
IR divergences. We stress, though, that the absence of
vortex modes does not mean that our fluid EFT is nothing
but a complicated reformulation of a superfluid. Indeed, it
is already known that a superfluid and an ordinary fluid are
inequivalent at ℏ ¼ 0 (although they are equivalent if there
is no vorticity) [23], and it follows by continuity that fluids
and superfluids must be inequivalent in general at ℏ ≠ 0. It
is tempting to conjecture, however, that both the conserva-
tion of vorticity and the equivalence between the zero-
vorticity fluid and the superfluid are preserved at the
quantum level; if so, we must look to quantum fluids with
nonvanishing vorticity in order to see a departure from
superfluid behavior. One possible arena would be the study
of the quanta corresponding to Kelvin waves [24], viz.
low-energy perturbations of vortex lines [25], for which
“Thomsons” is the obvious moniker. More generally, it
would be of interest to explore the quantum version of any

of the myriad phenomena of classical fluids: surface waves,
turbulence, shocks, etc.
Where can we hope to observe such phenomena?

Classical fluid behavior is typically observed in underlying
systems that are in local thermodynamic equilibrium at
finite temperature. To see quantum behavior in such a
system, we would need to somehow ensure that thermal
fluctuations are negligible in the long-distance fluid modes,
which are what we quantize here. Alternatively, perhaps the
correspondence of the theory with a fluid at the classical
level is a red herring. We have given evidence that there
exists an EFT, based on simple field content and sym-
metries, with behavior that is qualitatively novel. That is
interesting enough in itself, and leads us to hope that it may
be realized in nature somewhere.
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