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We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a
continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology
naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes
in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via
digital techniques, while we consider the continuum complexity of an open transmission line to simulate
the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the
complexity-simulating-complexity concept should become a leading paradigm in any effort towards
scalable quantum simulations.
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Introduction.—Quantum field theories [1] (QFTs) are
among the deepest and most complex descriptions of
nature. This is why different computing approaches have
been developed, as Feynman diagrams [1] or lattice gauge
theories [2]. In general, the numerical simulations of QFTs
are computationally hard, with the processing time growing
exponentially with the system size. Nevertheless, a quan-
tum simulator [3–5] could provide an efficient way to
emulate these theories [6–14] in polynomial time. For
instance, the remarkable developments in superconducting
circuits and circuit quantum electrodynamics (QED)
[15–23], specifically concerning their improvements in
controllability and scalability [24,25], make them suitable
candidates for developing a quantum simulator [26].
An important and probably unique property of super-

conducting devices is that, unlike other quantum platforms,
they offer naturally strong and ultrastrong couplings of
qubits to a continuum of bosonic modes provided by one-
dimensional open transmission lines. For instance, an
almost 100% reflection of a single photon by a two-level
scatterer in open lines has been demonstrated [27–29],
leading to applications of nonclassical state generation of
light [30]. Therefore, this system is a specially suited
platform to realize quantum simulations of scattering
processes involving interacting fermionic and bosonic
quantum field theories, where access to the continuum
of modes is required.
In this Letter, we propose the quantum simulation of

fermionic field modes interacting via a continuum of
bosonic modes with superconducting circuits, by introduc-
ing the complexity-simulating-complexity concept. With
this we mean using a complex quantum system to simulate
another quantum system with similar complexity. Along

these lines, in our proposal, a continuum complexity in
QFTs is simulated by a continuum complexity of open
transmission lines, instead of approximating the model to a
discrete number of modes or reducing it to many qubits. To
achieve this goal, we consider a quantum simulator
composed of tunable coupling transmon qubits [31,32],
an open transmission line with a finite bandwidth of
bosonic modes, and a microwave cavity supporting a single
mode of the electromagnetic field. In this scenario, we
discuss the minimum requirements that superconducting
circuits, or any other quantum platform, should fulfill in
order to implement a scalable analog-digital quantum
simulator, aiming at simulating fermion-fermion scattering,
fermion self-interaction, and pair creation and annihilation.
In addition, we discuss how to scale up the number of
fermionic degrees of freedom for the sake of simulating
full-fledged quantum field theories. Note that in Ref. [8],
the quantum simulation of a similar quantum field theory
model in trapped ions was proposed. However, this
quantum platform can only provide a discrete number of
bosonic modes that will be hard to improve when consid-
ering scalable quantum simulations of QFT models.
The model.—Our current understanding of the most

basic processes in nature is based on interacting quantum
field theories [1]. For example, models involving inter-
action of fermions and bosons play a key role. In these
kinds of systems, one is able to describe fermion-fermion
scattering mediated by bosonic fields, fermionic self-
energies, and bosonic polarization. In particular, we
will consider a quantum field theory model under the
following assumptions: (i) 1þ 1 dimensions, (ii) scalar
fermions and bosons, and described by the Hamiltonian
(ℏ ¼ c ¼ 1)
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H ¼
Z

dpωpðb†pbp þ d†pdpÞ þ
Z

dkωka
†
kak

þ
Z

dxψ†ðxÞψðxÞAðxÞ: ð1Þ

Here, AðxÞ ¼ i
R
dkλk

ffiffiffiffiffiffi
ωk

p ða†ke−ikx − akeikxÞ=
ffiffiffiffiffiffi
4π

p
is a

bosonic field [33], with coupling constants λk, and
ψðxÞ ¼ R

dpðbpeipx þ d†pe−ipxÞ=
ffiffiffiffiffiffiffiffiffiffiffi
4πωp

p
is the scalar fer-

mionic field, with b†pðbpÞ and d†pðdpÞ as its corresponding
fermionic and antifermionic creation(annihilation) opera-
tors for mode frequency ωp, while a†kðakÞ is the creation
(annihilation) bosonic operator associated with fre-
quency ωk.
In order to adapt the simulated model to the simulating

setup, we consider a further simplification in Eq. (1):
(iii) one fermionic and one antifermionic field comoving
modes [8] interacting via a continuum of bosons. The latter
is intended to analyze an interacting theory that may
describe fermion-fermion scattering, pair creation, dressed
states, and nonperturbative regimes.
The jth input comoving modes are defined in the

Schrödinger picture as follows [8]:

b†ðjÞin ¼
Z

dpΩðjÞ
f ðpðjÞ

f ; pÞb†pe−iωpt; ð2Þ

d†ðjÞin ¼
Z

dpΩðjÞ
f̄
ðpðjÞ

f̄
; pÞd†pe−iωpt; ð3Þ

whereΩðjÞ
f;f̄

ðpðjÞ
f;f̄

; pÞ are the jth fermionic and antifermionic

envelopes centered in the momenta pf and pf̄, respectively.
These modes create normalizable propagating wave pack-
ets when applied to the vacuum which are suitable for
describing physical particles, unlike the standard momen-
tum eigenstates which are delocalized over all space. For
our purposes we restrict ourselves to orthonormal envelope

functions ΩðjÞ
f;f̄

ðpðjÞ
f;f̄

; pÞ, such that the comoving modes

satisfy, at equal times, the anticommutation rela-

tions fbðiÞin ; b†ðjÞin g ¼ δij.
The implementation of the Hamiltonian in Eq. (1) with a

superconducting circuit setup is a hard problem because it
contains an infinite number of both bosonic and fermionic
modes. We will be able to mimic the former by using the
continuum of bosonic modes appearing in transmission
lines or low-quality resonators. In order to deal with the
latter, we consider the field fermionic ψðxÞ as composed of
a discrete, truncated set of comoving modes. This condition
allows us to expand the field ψðxÞ in terms of two of these
new anticommuting modes as a first order approximation,
neglecting the remaining anticommuting modes. Thus, the
fermionic field reads

ψðxÞ≃ Λ1ðpð1Þ
f ; x; tÞbð1Þin þ Λ2ðpð1Þ

f̄
; x; tÞd†ð1Þin ; ð4Þ

where the coefficients can be computed by considering the

anticommutators fψðxÞ; b†ð1Þin g and fψðxÞ; dð1Þin g, as follows:

Λ1ðpð1Þ
f ; x; tÞ ¼ fψðxÞ; b†ð1Þin g

¼ 1ffiffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffi
2ωp

p Ωð1Þðpð1Þ
f ; pÞeiðpx−ωptÞ; ð5Þ

Λ2ðpð1Þ
f̄
;x;tÞ¼fψðxÞ;dð1Þin g

¼ 1ffiffiffiffiffiffi
2π

p
Z

dpffiffiffiffiffiffiffiffi
2ωp

p Ωð1Þðpð1Þ
f̄
;pÞe−iðpx−ωptÞ; ð6Þ

where we have considered ψðxÞ in the Schrödinger picture.
Henceforth, we shall omit the superindices since we only
consider two creation operators.
The Hamiltonian associated with the proposed quantum

field theory model can be rewritten in light of the previous
assumptions. Substituting the expressions for the bosonic
AðxÞ and fermionic ψðxÞ fields into the interaction
Hamiltonian of Eq. (1) yields [33]

Hint ¼ i
Z

dxdkλk

ffiffiffiffiffiffi
ωk

2

r
ðjΛ1ðpf; x; tÞj2b†inbin

þ Λ�
1ðpf; x; tÞΛ2ðpf̄; x; tÞb†ind†in

þ Λ�
2ðpf̄; x; tÞΛ1ðpf; x; tÞdinbin

þ jΛ2ðpf̄; x; tÞj2dind†inÞða†ke−ikx − akeikxÞ: ð7Þ

The fermionic and antifermionic operators obey anticom-
mutation relations fbin; b†ing ¼ fdin; d†ing ¼ 1, and the
bosonic operators satisfy commutation relations
½ak; a†k0 � ¼ δðk − k0Þ. In this sense, we expect that reproduc-
ing the physics of a discrete number of fermionic fieldmodes
coupled to a continuum of bosonic field modes will boost
full-fledged quantum simulations of quantum field theories.
Let us now consider the Jordan-Wigner transformation

[38,39] that relates fermionic operators with tensor prod-
ucts of Pauli operators: b†l ¼

Q
l−1
r¼1 σ

−
l σ

z
r, and d†m¼Q

m−1
r¼1 σ

−
mσ

z
r, where l¼1;2;…;N=2, m¼N=2þ1;…;N,

with N the total number of fermionic plus antifermionic
modes. Note that this transformation is efficient with
our techniques for simulating fermions coupled to the
bosonic continuum. That is, we require a polynomial
number of qubits and gates in the number of fermionic
modes [40]. In this case, the Hamiltonian in Eq. (7) presents
three kinds of interactions: single and two-qubit gates
coupled to the continuum H1 ¼ iσj

R
dxdkgkða†ke−ikx−

akeikxÞ, H2 ¼ iðσj ⊗ σlÞ
R
dxdkgkða†ke−ikx − akeikxÞ, with

σq ¼ fσx; σy; σzg for q ¼ 1; 2; 3, and interactions involving
only bosonic modes, H3 ¼ i

R
dxdkgkða†ke−ikx − akeikxÞ

(see Supplemental Material [33]). Thus, the simulator
should provide a mechanism for generating multiqubit
gates and coupling spin operators to a continuum of bosons
in an analog-digital approach [10,11].
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In light of the above discussion, a possible interaction
term reads H ¼ iðb†i d†j þ djbiÞ

R
dkgkða†ke−ikx − akeikxÞ.

The Jordan-Wigner transformation allows us to write the
above interaction as the exponential of a tensor product of
Pauli matrices with a band of bosonic modes. To compute
this exponential, we propose the implementation of the
following sequence of quantum gates [10,11]:

U¼UMSð−π=2;0ÞUσzðϕÞUMSðπ=2;0Þ

¼ exp

�
ϕðσz⊗σx⊗σx⊗…Þ

Z
dkgkða†ke−ikx−akeikxÞ

�
;

ð8Þ

where UMS is a Mølmer-Sørensen gate [41] that can
be parametrized as UMSðθ;ϕÞ ¼ exp½−iθðcosϕSxþ
sinϕSyÞ2=4�. Here Sx;y ¼

P
iσ

x;y
i is extended to as many

qubits as fermionic modes are involved, and the central gate
UσzðϕÞ is exp½−ϕσz1

R
dkgkða†ke−ikx − akeikxÞ�.

Circuit QED implementation.—Circuit QED architec-
tures including the interaction between on-chip coplanar
waveguides (CPWs) and transmon qubits [31,32,42] are an
appropriate platform to fulfill the requirements of the
analog-digital simulator. We consider the setup depicted
in Fig. 1(a), which consists of a microwave transmission
line supporting a continuum of electromagnetic modes
(open line) interacting with three transmon qubits. In
addition, there is a microwave resonator with a single
bosonic mode coupled only with two transmons. Notice
that two superconducting qubits may interact simultane-
ously with both CPWs, while the ancilla qubit interacts
only with the open line.
In this setup, we consider tunable couplings between

each qubit and the CPWs, and also tunable superconduct-
ing qubit energies via external magnetic fluxes. In particu-
lar, the protocol for simulating fermion-fermion scattering
will require the ability to switch on or off each CPW-qubit
interaction with control parameters. The latter may be

realized by combining tunable coupling transmon qubits,
[31,32] and standard techniques of band-stop filters [43]
applied to the open transmission line. This way, a finite
bandwidth of bosonic modes plays a key role in the
dynamics. Our model considers an open transmission line
without an external bath, due to the fact that all dynamical
time scales happen before the model is broken by
decoherence mechanisms. In this sense, the decoupling
of a transmon qubit from the open line may be accom-
plished by tuning the qubit energy out of the bandwidth. In
addition, our protocol may be extended to several fermionic
modes by adding more transmon qubits as depicted
in Fig. 2.
In this circuit QED implementation, the system

Hamiltonian can be written in terms of Pauli matrices in
the following general form [33]:

Hint ¼ i
X3
j¼1

σyj

Z
dkβðΦj

ext; Φ̄
j
extÞgkða†ke−ikxj − akeikxjÞ

þ i
X2
j¼1

αðΦj
ext; Φ̄

j
extÞgjσyjðb† − bÞ; ð9Þ

where σy is the Pauli operator, a†kðakÞ and ωk stand for the
creation(annihilation) operator and the frequency associ-
ated with the kth continuum mode, respectively, whereas
the operator b†ðbÞ creates(annihilates) excitations in the
microwave resonator. The coupling strengths gk ¼ ffiffiffiffiffiffi

ωk
p

and gj depend on intrinsic properties of the CPW such as
its impedance and the photon frequencies. In addition,
xj stands for the jth qubit position, and the coefficient
βðαÞ can be tuned over the range ½0; βmax�ð½0; αmax�Þ via
external magnetic fluxes Φj

ext and Φ̄
j
ext, which act on the jth

transmon qubit. Note that the same magnetic fluxes also
allow us to tune the qubit energy.
Let us discuss how Hamiltonian in Eq. (9) is able to

simulate the dynamics governed by Hamiltonian in Eq. (7).
In Fig. 1(b), we show the set of quantum operations for

qubit 1

qubit 2

ancilla qubit

U
M

S
 (-

/2
,0

) UC

UA

U
M

S
 (

/2
,0

)
(a) (b)

FIG. 1 (color online). (a) Schematic representation of our proposal for simulating fermion-fermion scattering in quantum field
theories. An open transmission line (blue) supporting the continuum of bosonic modes interacts with two superconducting qubits
(green) simulating the fermions and one ancilla qubit (grey). The second one-dimensional waveguide (red), forming a resonator due to
the capacitors at each edge, supports a single mode of the microwave field and interacts with two superconducting qubits. Each qubit can
be individually addressed through on-chip flux lines producing fluxes Φj

ext and Φ̄j
ext to tune the coupling strength and its corresponding

energies. (b) Sequence of multiple and single qubit gates, inside a Trotter step, acting on superconducting qubits to generate two-qubit
interactions coupled to the continuum, where UMSð−π=2; 0Þ ¼ expðiπσx ⊗ σx=4Þ, and UC;A ¼ exp½−ϕσy;z1;A

R
dkgkða†ke−ikx − akeikxÞ�.
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simulating two-qubit gates coupled to the continuum
in a single Trotter step [4,10] to be realized by the
proposed analog-digital simulator. In this circuit QED
framework, each gate will correspond to the evolution
under the Hamiltonian in Eq. (9) for specific values of
parameters Φj

ext and Φ̄j
ext. Specifically, the gates that act on

the first two qubits are, from right to left, one Mølmer-
Sørensen [41] interaction UMSðπ=2; 0Þ, which is medi-
ated by the resonator [40], one local gate UC ¼
exp½−ϕσy1

R
dkgkða†ke−ikx − akeikxÞ� that will couple the

spin operators to the bosonic continuum, and an inverse
Mølmer-Sørensen interaction UMSð−π=2; 0Þ. The appli-
cation of these three operations will generate the two-
qubit gate coupled with a continuous band of bosonic
modes, H2 ¼ iðσj ⊗ σlÞ

R
dkgkða†ke−ikx − akeikxÞ.

The gate Uc will be used independently on each qubit to
generate single-qubit gates coupled to the bosonic con-
tinuum. Besides, the ancilla qubit allows the generation of
the gates that involve only the bosonic modes by means of
an interaction UA ¼ exp½−ϕσzA

R
dkgkða†ke−ikx − akeikxÞ�,

where σzA is the Pauli operator. The required gate is obtained
by preparing the ancilla in an eigenstate of σzA. The
number of entangling gates needed for a single Trotter
step is eight. The same scheme of gates can be applied
on more qubits in order to scale the system for sim-
ulating interactions that involve a larger number of fer-
mionic modes.
The spatial dependence of the model is given by spatial

integrals
R
dxða†ke−ikx − akeikxÞfðx; tÞ, where fðx; tÞ

stands for the different space-dependent coefficients
appearing in the Hamiltonian of Eq. (7). These integrals
can be rewritten as follows:

Iðk; tÞ ¼
Z

dxfa†ke−ikxj ½cos kðx − xjÞ − i sin kðx − xjÞ�

− akeikxj ½cos kðx − xjÞ þ i sin kðx − xjÞ�gfðx; tÞ:
ð10Þ

If fðx; tÞ satisfies the condition fðx − xj; tÞ ¼ fð−xþ
xj; tÞ, then we can simplify the integrals such that

Iðk; tÞ ¼ ða†ke−ikxj − akeikxjÞ
Z

dx cos kðx − xjÞfðx; tÞ:
ð11Þ

We can identify the controllable quantity of the circuit
βðΦj

ext; Φ̄
j
extÞgk with the spatial-dependent terms times the

k-dependent coupling of the field theory model, i.e.,
λk

ffiffiffiffiffiffi
ωk

p R
dx cos kðx − xjÞfðx; tÞ. If we consider an imple-

mentation that uses transmon qubits, their capacitive
coupling to the open line leads naturally to a coupling
gk ¼ ffiffiffiffiffiffi

ωk
p

, allowing us to simulate models where
λk

R
dx cos kðx − xjÞfðx; tÞ is constant or weakly depen-

dent on k. Other kinds of couplings may be simulated by
considering a different superconducting circuit such as the
flux qubit, leading to the implementation of couplings
depending on 1=

ffiffiffiffiffiffi
ωk

p
.

Scaling to N fermionic modes.—A way of scaling this
formalism to a larger number of fermionic modes is to
consider more superconducting elements coupled both to
the cavity and to the open transmission line, as depicted in
Fig. 2. If we consider N þ 1 transmon qubits, then, N
fermionic modes can be also encoded. Accordingly, our
proposal can implement a large set of fermionic modes
interacting with the bosonic continuum. The addition of
more qubits and transmission lines will allow one to
simulate quantum fields in larger spatial dimensions.
This effort would represent a significant advance towards
full-fledged quantum simulation of QFTs in controllable
superconducting circuits.
By means of the proposed techniques, one could

measure specific features of QFTs, such as self-interaction
and pair creation and annihilation of fermions mediated via
a continuum of bosonic modes. The quantum computation
resulting from this quantum simulation is based on unitary
evolutions associated with the Hamiltonian in Eq. (7). This
means that at variance with perturbative methods in
quantum field theories, the implementation of our protocol
will involve an infinite number of perturbative Feynman
diagrams with a finite number of fermionic modes. In this
sense, this approach towards the quantum simulation of

+ +

+ +

(a) (b)

FIG. 2 (color online). (a) Scheme for the implementation of a set of N fermionic modes coupled to a continuum of bosonic modes.
Each fermionic mode is encoded in a nonlocal spin operator distributed among N superconducting qubits. (b) Feynman diagrams
associated with the quantum simulation of two fermionic modes coupled to a continuum of bosonic modes in a superconducting circuit
setup, as explained in the text. We point out that our proposal contains all orders of Feynman diagrams for a finite number
of fermionic modes.
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full-fledged quantum field theories is significantly different
from standard procedures, since it only requires adding
more fermionic modes instead of more Feynman diagrams.
Nevertheless, the natural presence of the continuum of
bosonic modes in superconducting circuits approaches our
proposal to the targeted model.
Conclusions.—In this Letter, we have proposed an

analog-digital quantum simulation of fermion-fermion
scattering in the context of quantum field theories with
superconducting circuits. This quantum technology pro-
vides, in a unique and distinct manner, the strong coupling
between superconducting qubits and a microwave resona-
tor, as well as between qubits and a continuum of bosonic
modes. Our approach represents a significant step towards
scalable quantum simulations of quantum field theories in
perturbative and nonperturbative regimes with a novel
approach: simulating the quantum complexity of a con-
tinuum of QFT bosonic modes with the quantum complex-
ity of a continuum of circuit QED bosonic modes.
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