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We give the first composable security proof for continuous-variable quantum key distribution with
coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges
to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti
theorem or the postselection technique then shows the security of the protocol against general attacks,
thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the
composable security framework. We expect that our parameter estimation procedure, which does not rely
on any assumption about the quantum state being measured, will find applications elsewhere, for instance,
for the reliable quantification of continuous-variable entanglement in finite-size settings.
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Quantum key distribution (QKD) is a cryptographic
primitive that allows two distant parties, Alice and Bob,
who have access to an insecure quantum channel and an
authenticated classical channel, to distill a secret key. QKD
has spurred a lot of interest in the past decades, because
it is arguably the first application of the field of quantum
information to reach commercial maturity [1]. Despite a
lot of effort invested in the theoretical analysis of QKD
protocols, composable security [2,3] has been established
for only a handful of protocols, for instance, the Bennett-
Brassard 1984 protocol (BB84) [4]. This major achieve-
ment is the latest step in a series of more and more refined
security proofs and improved bounds for the secret key
rates. More precisely, composable security proofs have
successively used an exponential version of the de Finetti
theorem [5], the postselection technique [6], and an
entropic uncertainty principle [7].
The situation for continuous-variable (CV) protocols is

much less advanced [8]. These protocols [9,10], which do
not require single-photon detectors, are particularly appeal-
ing in terms of implementation [11], but their security is
still far from being completely understood. Recently, a
composable security proof for a CV protocol was obtained
[12–14] from an entropic uncertainty principle [15], but the
protocol requires the generation of squeezed states and
is only moderately tolerant to losses. Other approaches to
establish the security of a protocol typically consist of two
independent steps: first, a composable security proof valid
against collective attacks, a restricted type of attacks where
the quantum state shared by Alice and Bob’s protocol
displays a tensor product structure, followed by an addi-
tional argument to obtain security against general attacks.
These two steps have been partially completed in the case
of CV protocols: a reduction from general to collective
attacks is obtained via two possible techniques, namely, a
de Finetti theorem [16] and the postselection technique

[17], the latter technique being more efficient but at the
price of adding an unpractical symmetrization step to the
protocol [18]. Unfortunately, security against collective
attacks has been proved (via a Gaussian optimality argu-
ment [20]) only in the asymptotic limit, which does not say
anything about composable security [21–23]. Note also that
finite-size effects for CV QKD were partly explored in
Ref. [24], but under a Gaussian attack assumption.
In this Letter, we give the first composable security proof

valid against collective attacks for CV QKD with coherent
states [25] and either direct or reverse reconciliation [27].
The postselection technique then implies composable
security against general attacks. Remarkably, the secret
key rate is asymptotically equal to the one assuming a
Gaussian attack, which is not the case for the proof based
on the uncertainty principle. This is crucial for the
distribution of keys over long distances [11].
To prove this result, we develop a number of techniques

including a tool for reliable tomography of the covariance
matrix without making any assumption about the quantum
state. By performing the parameter estimation (PE) step
after error correction (EC), we improve the estimation and
are able to use almost all the raw data to distill the secret
key. A similar strategy was also considered for BB84 in
Ref. [28]. Our only assumptions are that Alice and Bob
have access to a classical authenticated channel and that
their equipment is trusted: they can prepare coherent states
and detect light with heterodyne detection. Our framework
can easily incorporate imperfections either in the prepara-
tion or in the detection, as long as they are properly
modeled. To keep the notations simple, we will, however,
assume that the equipment of the legitimate parties is
perfect.
Composable security.—An entanglement-based (EB)

QKD protocol E is a completely positive trace-preserving
(CPTP) map E∶HA ⊗ HB → SA ⊗ SB ⊗ C that takes an
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arbitrary input state ρAB shared by Alice and Bob and
outputs for each party a classical string SA or SB and some
public transcript C. For a CV protocol, both HA and HB
correspond to infinite-dimensional Fock spaces, while SA,
SB, and C describe classical registers.
A QKD protocol should be secure, meaning that the

output keys should be identical and secret [7]. It should
also be robust, i.e., output nontrivial keys if there is no
active attack on the quantum channel. These are actually
properties of the output state of the protocol, more
precisely, of ρSASBE, which should hold for any input state
[29]. The subscript E refers to the quantum register HE of
the adversary, and the final state is obtained by applying the
map E ⊗ idHE

to an arbitrary purification ΨABE of ρAB. A
QKD protocol is called correct if SA ¼ SB for any strategy
of the adversary, that is, any initial state of the protocol
ΨABE. A protocol is ϵcor-correct if Pr½SA ≠ SB� ≤ ϵcor.
Denote by HE0 ¼ HE ⊗ C the space accessible to the
adversary (her quantum system E and the public transcript
C). A key is called δ-secret if it is δ-close in trace distance
to a uniformly distributed key that is uncorrelated with
the eavesdropper:

1

2
∥ρSlAE0 − ωl ⊗ ρE0∥1 ≤ δ; ð1Þ

where ρlSAE0 is the state conditioned on the key length l and
ωl is the fully mixed state on classical strings of length l.
If the protocol aborts, it outputs a dummy key of size 0,
which is automatically secret. A QKD protocol is called
ϵsec-secret if, for any attack strategy, it outputs δ-secret
keys with ð1 − pabortÞδ ≤ ϵsec, where pabort is the abort
probability. A QKD protocol is ϵ-secure if it is ϵsec-secret
and ϵcor-correct with ϵsec þ ϵcor ≤ ϵ. Since a protocol that
would always abort is perfectly secure according to this
definition, it is important to take into account its robustness
ϵrob, which is the probability that the protocol aborts if the
eavesdropper is inactive. In the case of a CV QKD protocol,
this corresponds to a thermal bosonic channel, which is a
good model for the transmission of light in an optical fiber.
Description of the CV QKD protocol E0.—We focus here

on the EB version of the protocol, but the security of its
prepare and measure version where Alice sends coherent
states and Bob uses heterodyne detection follows immedi-
ately. Moreover, we present the reverse reconciliation
version, which is the most useful in practice. The direct
reconciliation version is easily obtained by interchanging
the roles of Alice and Bob in the classical postprocessing
part of the protocol. Recall that, in order to obtain security
against general attacks, one would need to add another
step to the protocol, involving an energy test as well as a
potential symmetrization procedure.
The protocol E0 is sketched in Table 1 (and detailed in

Supplemental Material [30]) and depends on a number of
parameters: most notably, the number 2n of coherent states
sent by Alice, the length l of the final key if the protocol did

not abort, the discretization parameter d, the size of Bob’s
communication to Alice, leakEC, during the error correction
procedure, the maximum failure probabilities ϵcor and ϵPE
for the EC and PE steps, respectively, some bounds on
covariance matrix elements, Σmax

a ;Σmax
b ;Σmin

c , for the PE
test to pass, and a robustness parameter ϵrob.
Our main result quantifies the security of the protocol E0

in the composable security framework.
Theorem 1: The protocol E0 is ϵ-secure against

collective attacks if ϵ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵPE þ ϵcor þ ϵent

p þ 2ϵsm þ ϵ̄ and
if the key length l is chosen such that

l ≤ 2n½2ĤMLEðUÞ − fðΣmax
a ;Σmax

b ;Σmin
c Þ� − leakEC

− ΔAEP − Δent − 2 log
1

2ϵ̄
; ð2Þ

where ĤMLEðUÞ is the empirical entropy of U, ΔAEP ≔ffiffiffiffiffiffi
2n

p ½ðdþ 1Þ2 þ 4ðdþ 1Þlog2ð2=ϵ2smÞ þ 2log2ð2=ϵ2ϵsmÞ� þ
4ϵsmd=ϵ, Δent ≔ log2ð1=ϵÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8nlog22ð4nÞ logð2=ϵsmÞ

p
,

and f is the Holevo information between Eve and Bob’s
measurement result for a Gaussian state with covariance
matrix parametrized by Σmax

a ;Σmax
b ;Σmin

c .
This secret key size should be compared to the asymp-

totic secret key rate assuming collective, Gaussian attacks.
This can be done by assuming a passive quantum channel
corresponding to a Gaussian channel with transmittance T
and excess noise ξ. One needs to factor in the robustness of
the protocol, that is, the probability that the PE test will not

TABLE I. Protocol E0, with reverse reconciliation and param-
eters n, l, leakEC, ϵcor, nPE, ϵPE, Σmax

a , Σmax
b , Σmin

c , and d.

(1) State preparation.—Alice prepares 2n two-mode squeezed
vacuum states, keeps the first half of each state, and transmits
the second half to Bob through an insecure quantum channel.

Alice and Bob then share a global quantum state ρ⊗ð2nÞ
AB .

(2) Measurement.—Alice and Bob measure their respective
modes with heterodyne detection and obtain two strings
X; Y ∈ R4n. Bob discretizes his 4n-vector Y to obtain them-bit
string U, where m ¼ 4dn; i.e., each symbol is encoded with
d bits of precision.

(3) Error correction.—Bob sends some side information of size
leakEC to Alice (syndrome of U for a linear error correcting
code C agreed on in advance), and Alice outputs a guess Û for
the string of Bob. Bob computes a hash of U of length
⌈log2ð1=ϵcorÞ⌉ and sends it to Alice, who compares it with her
own hash. If both hashes differ, the protocol aborts.

(4) Parameter estimation.—Bob sends nPE ¼ O( logð1=ϵPEÞ) bits
of information to Alice that allow her to compute ∥X∥2; ∥Y∥2
and hX; Yi, as well as γa, γb, and γc defined in Eqs. (3)–(5).
The PE test passes if ½γa ≤ Σmax

a �∧½γb ≤ Σmax
b �∧½γc ≥ Σmin

c �;
otherwise, the protocol aborts.

(5) Privacy amplification.—Alice and Bob apply a random
universal2 hash function to their respective strings, obtaining
two strings SA and SB of size l.
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pass in the case of a passive channel. We plot the secret
key rate as a function of n for ϵ ¼ 10−20 in Fig. 1. The
asymptotic key rate is typically reached for n between 108

and 1011 for distances up to 50 km.
Parameter estimation.—We defer the detailed descrip-

tion of the protocol E0 and its full security proof to the
Supplemental Material [30] and focus more specifically on
the PE step here. A novelty of the protocol is that PE is
performed after EC. This can be done quite efficiently,
since a rough estimate of the signal-to-noise ratio of the
data is in general sufficient to choose an appropriate error
correcting code and proceed with the reconciliation. At the
end of the EC step, Alice therefore knows the strings X and
U, and it is not hard to show that, if Bob sends her a few
additional bits, she can learn the values of ∥X∥2, ∥Y∥2, and
hX; Yi arbitrarily well.
The goal of the PE step is to obtain a confidence region

for the covariance matrix of the state ρ⊗ð2nÞ
AB . Here, one

needs to be careful, because, by the time PE is performed,
the state has already been measured and it does not make
real sense to talk about its covariance matrix anymore. We
will follow the paradigm for tomography introduced in
Ref. [47] and define a quantum tomography process as a
CPTP map that takes an input state ρnþk ∈ H⊗ðnþkÞ,
symmetrizes it, and outputs a state ρn ∈ H⊗n as well as

a confidence region R of P¼ðH⊗nÞ, the set of normalized
density operators on H⊗n [48]. In words, it consists in
measuring a subsystem of the initial state and making a
prediction for the remaining state. The quality of the
quantum tomography is assessed by two parameters: the
probability that the prediction is false and the size of
the region. A larger region means a smaller error proba-
bility but also a more pessimistic secret key rate.
An important issue concerning the tomography of a

CV system is that the covariance matrix is a priori
unbounded. Consider, for instance, the state σ⊗ðnþkÞ with
σ ¼ ð1 − ϵÞj0ih0j þ ϵjNihNj. The covariance matrix of σ is
diagð1þ Nϵ=2; 1þ Nϵ=2Þ, but any tomographic pro-
cedure that examines only k ≪ 1=ϵ modes will conclude
that the covariance matrix is close to that of the vacuum,
which is clearly incorrect if Nϵ ≫ 1. The solution to this
problem consists in first appropriately symmetrizing the
state ρnþk before measuring k subsystems and inferring
properties for the remaining n modes.
Ideally, the tomography of the input state ρ2nAB of the

QKD protocol E0 should consist of the following steps,
which involve additional parties A1 and A2 on Alice’s side
and B1 and B2 on Bob’s side:
(1) State symmetrization.—Alice’s 2n modes are proc-

essed with a random network of beam splitters and
phase shifts, and Bob’s modes with the conjugate
network, giving a new state ~ρ2n.

(2) Distribution to additional players.—Alice and Bob
distribute ~ρn1 corresponding to the first n modes of
~ρ2n to A1 and B1. Similarly, they give ~ρn2 to A2

and B2.
(3) Measurement.—A1 and B1 measure ~ρn1 with hetero-

dyne detection and obtain two vectors X1; Y1 ∈ R2n.
Similarly, A2 and B2 obtain X2; Y2 ∈ R2n.

(4) Parameter estimation.—B1 sends some information
to A1 so that she can learn the values of ∥X1∥2,
∥Y1∥2, and hX1; Y1i and then compute a confidence
region for the (averaged) covariance matrix of ~ρn2 .
Similarly, A2 computes a confidence region for that
of ~ρn1 .

By averaged covariance matrix, we mean the three real values
Σa, Σb, and Σc defined by Σa=b ≔ ð1=2nÞPn

i¼1ðhq2A=Bi
i þ

hp2
A=B;iiÞ and Σc ≔ ð1=2nÞPn

i¼1 ðhqA;iqB;ii − hpA;ipB;iiÞ,
where qA;i is the quadrature operator ð1= ffiffiffi

2
p Þðâi þ â†i Þ for

the ith mode of Alice, for instance.
An interesting feature of this PE procedure is that A1 and

A2 can, respectively, estimate the covariance matrices of ~ρn2
and ~ρn1, meaning that a secret key can be distilled from both
halves of the state. In other words, no raw key is wasted
because of parameter estimation. While it is clear that this
scheme is rather impractical, one can show that it can
nevertheless be efficiently simulated by Alice, without any
need for symmetrization or for additional parties.
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FIG. 1 (color online). Expected secret key rate r ¼
ð1 − ϵrobÞl=2n secure against collective attacks, as a function
of 2n, the number of exchanged signals. From top to bottom, the
transmittance of the quantum channel corresponds to distances of
1, 10, 50, and 100 km for assumed losses of 0.2 dB per kilometer.
For each distance, the expected secret key rate reaches the
asymptotic value for large enough n. The modulation variance
is optimized; the reconciliation efficiency is set to β ¼ 0.95,
the discretization parameter to d ¼ 5 (the value of d should be
optimized depending on the error correcting codes used in the
reconciliation; see, e.g., [46]), the excess noise to ξ ¼ 0.01, the
robustness parameter to ϵrob ≤ 10−2, and the security parameter
to ϵ ¼ 10−20. Dashed lines correspond to the respective asymp-
totic expected secret key rates. Refer to the Supplemental
Material for a detailed derivation of the value of the expected
secret key rate.
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In fact, if Alice learns the values of ∥X∥2, ∥Y∥2, and
hX; Yi, she can compute γa; γb; γc as follows:

γa ≔
1

2n

"
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð36=ϵPEÞ

n

r #
∥X∥2 − 1; ð3Þ

γb ≔
1

2n

"
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð36=ϵPEÞ

n

r #
∥Y∥2 − 1; ð4Þ

γc ≔
1

2n
hX; Yi − 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð8=ϵPEÞ

n3

r
ð∥X∥2 þ ∥Y∥2Þ: ð5Þ

We are now in a position to define the parameter estimation
test and bound its failure probability (proven in the
Supplemental Material [30]).
Theorem 2: The probability that the parameter esti-

mation test passes, that is, ½γa ≤ Σmax
a �∧½γb ≤ Σmax

b �∧
½γc ≥ Σmin

c � and that Eve’s information χðU;EÞ computed
for the Gaussian state with the covariance matrix charac-
terized by Σmax

a , Σmax
b , and Σmin

c is underestimated, is upper
bounded by ϵPE.
Here the Holevo information χðU;EÞ is upper bounded

by fðΣmax
a ;Σmax

b ;Σmin
c Þ ≔ g½ðν1 − 1Þ=2� þ g½ðν2 − 1Þ=2�−

g½ðν3 − 1Þ=2�, where ν1 and ν2 are the symplectic eigen-
values of the covariance matrix

�
Σmax
a 12 Σmin

c σz
Σmin
c σz Σmax

b 12

�
; ð6Þ

ν3 ¼ Σmax
a − ðΣmin

c Þ2=ð1þ Σmax
b Þ, σz ¼ diagð1;−1Þ, and

gðxÞ ≔ ðxþ 1Þlog2ðxþ 1Þ − xlog2ðxÞ.
Once we are able to analyze the PE test, the rest of the

security proof follows in a rather straightforward fashion:
see the Supplemental Material for all the details [30]. It
should be noted that the assumption of collective attacks
was not used in the PE step: this is because the symmet-
rization breaks the tensor product of the state. However,
we crucially rely on the collective attack assumption when
exploiting the asymptotic equipartition property of the
smooth min-entropy, which is the quantity of interest to
analyze the success of the privacy amplification step.
A security proof against general attacks.—So far, we

have restricted the analysis to collective attacks. For CV
QKD, there are two known techniques to obtain a full
security proof from one holding against collective attacks:
an exponential version of the de Finetti theorem [16] and
the postselection technique [17]. The former technique
directly applies here and can be used to upgrade the
protocol E0 to a slightly more complicated one (including
an energy test and a random permutation) that is provably
~ϵ-secure against general attacks, but with ~ϵ ≫ ϵ, provided
the key length is adequately shortened. However, while this
provides composable security CV QKD with coherent

states against general attacks, it does not give very good
finite-key estimates. The postselection technique is better
but still falls short on providing useful finite-size key
estimates. Indeed, in order to apply it, one needs to add an
energy test which depends on a small parameter ϵtest, and
if the protocol E0 was ϵ-secure against collective attacks,
the new protocol is ~ϵ-secure against general attacks where
~ϵ ¼ ϵ2O(log4ðn=ϵtestÞ) þ 2ϵtest, which is prohibitive in practice.
Moreover, in the case of reverse reconciliation, it seems that
the current postselection technique requires an additional
symmetrization step for the classical data, which have
complexity Θðn2Þ. Whether or not this symmetrization can
be simulated, as was the case in the PE step, is left as an
interesting open question.
Conclusion.—We have provided a composable security

proof of a CV QKD protocol using coherent states valid
against collective attacks. This was the missing step to
establish the security of such protocols against general
attacks in the composable security framework. The bounds
we obtained are compatible with state-of-the-art experi-
ments. For protocols with direct reconciliation, this directly
gives a composable security proof against general attacks.
For reverse reconciliation, which is required to achieve
long distances, an additional symmetrization step provides
the same level of security. Further work will be needed to
improve the current reductions from general to collective
attacks, which should be possible since the current tech-
niques do not exploit all the symmetries of the protocols.
We expect our parameter estimation procedure to find

applications in the field of continuous-variable entangle-
ment. Indeed, most criteria for detecting CV entanglement
are based on the covariance matrix [49], and, to our
knowledge, our procedure gives the first robust estimation
of the covariance matrix of an unknown quantum state
without relying on any assumption such as the Gaussian
nature of the state.
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