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We characterize the Mott insulating regime of a repulsively interacting Fermi gas of ultracold atoms in a
three-dimensional optical lattice. We use in situ imaging to extract the central density of the gas and to
determine its local compressibility. For intermediate to strong interactions, we observe the emergence of a
plateau in the density as a function of atom number, and a reduction of the compressibility at a density of
one atom per site, indicating the formation of a Mott insulator. Comparisons to state-of-the-art numerical
simulations of the Hubbard model over a wide range of interactions reveal that the temperature of the gas is
of the order of, or below, the tunneling energy scale. Our results hold great promise for the exploration of
many-body phenomena with ultracold atoms, where the local compressibility can be a useful tool to detect
signatures of different phases or phase boundaries at specific values of the filling.
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The Hubbard model, which describes spin-1=2 fermions
in a lattice with on-site interactions, is one of the funda-
mental models in quantum many-body physics. It is a
notable example of how strongly correlated phases emerge
from simple Hamiltonians: it exhibits a Mott insulating
regime, antiferromagnetism, and is widely believed to
support a d-wave superfluid state in two dimensions
(2D), which could explain high-temperature superconduc-
tivity as observed in the cuprates [1]. Despite intense efforts,
an exact solution of the Hubbard model in more than one
dimension and for arbitrary filling has evaded theoretical
and computational approaches to this day. Complementing
these approaches, the last decade has seen the development
of ultracold atoms in optical lattices as a new and versatile
platform for the study of many-body physics [2,3]. In this
Letter, we study a two-spin component degenerate gas of
fermions in a simple cubic lattice, a system which realizes
the three-dimensional (3D) single band Hubbard model.
Previous groundbreaking experiments investigated the

Mott transition in trapped lattice fermions by measuring the
variation of the bulk double occupancy with atom number
[4–6] and the response of the cloud radius to changes in
external confinement [7], both of which are related to the
global compressibility. Several key issues, however, remain
to be addressed. (i) As bulk measurements are the result
of an average over both metallic and insulating phases
simultaneously present in the trap, how does the local
compressibility behave within the trap? (ii) How does the
compressibility respond at lower temperatures, as one
approaches the magnetic transition? (iii) Can more robust
theoretical treatments be employed to benchmark the
observed behavior?

In this Letter, we address these issues, making significant
progress towards understanding the physics of the fer-
mionic Hubbard Hamiltonian through optical lattice emu-
lation. We extract the local compressibility of the gas from
a measurement of the in situ density profile, a procedure
that has been previously demonstrated for a Fermi gas in a
harmonic potential [8] and for lattice bosons [9]. The local
compressibility, as well as the central density of the gas,
is readily compared with numerical simulations within
the local density approximation (LDA). Previous work
has shown that the LDA agrees well with numerical
calculations of the inhomogeneous Hubbard Hamiltonian
away from the quantum critical regime close to the Néel
transition [10–12]. The local character of our measure-
ments allows differentiation between the incompressible
Mott insulating core and the compressible surrounding
metal, thus enabling a more precise characterization of the
Mott transition, even at intermediate values of the coupling
strength, where magnetic correlations are predicted to be
strongest [13–15].
The Hubbard Hamiltonian is given by

Ĥ ¼ −t
X
hiji;σ

ðĉ†iσ ĉjσ þ H:c:Þ þU
X
i

n̂i↑n̂i↓ − μ
X
i;σ

n̂iσ:

ð1Þ

Here, the indices i; j denote lattice sites, the spin states are
labeled as σ ¼ ↑ or ↓, the angled brackets indicate
summation over nearest neighbors, t is the nearest-neighbor
tunneling matrix element, U (>0) is the on-site interaction
energy, μ is the chemical potential, ĉ†iσ (ĉiσ) is the creation
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(annihilation) operator for a fermion with spin σ at site i,
and n̂iσ ¼ ĉ†iσ ĉiσ is the density operator.
For μ ¼ U=2, the average density of the system is n ¼ 1

particle per lattice site (half filling). At half filling, as the
temperature T is reduced, or as U is increased, such that
T ≪ U, the system undergoes a smooth crossover to a
Mott insulating regime, characterized by a suppression of
the number of doubly occupied sites and a suppression
of density fluctuations, which implies a reduction of the
compressibility [16]. If T is reduced below the Néel
temperature TN (∼4t2=U for U ≫ t), the system undergoes
a phase transition to an antiferromagnetic (AFM) state.
Cooling and thermometry have been the greatest

challenges for realizing the Hubbard model with ultracold
atoms in optical lattices [17]. Even though the temperatures
required for pairing and superfluidity in the doped Hubbard
model [18] have not yet been reached, the past few years
have seen steady experimental progress. This includes the
observation of Fermi surfaces in a band insulator [19], the
observation of the Mott insulating regime for strong
couplings (U=t ≥ 18) [4,6,7] and, more recently, the
detection of AFM spin correlations in 1D chains [20,21]
and in a 3D lattice [22].
A vanishing local compressibility characterizes the Mott

regime in the Hubbard model. It can also be a useful
observable to characterize other phases and models realized
with ultracold atoms. For example, kinks in the local
compressibility can indicate phase boundaries in the
trapped system [23]. The isothermal compressibility of a
gas is defined as

κ ¼ 1

n2
∂n
∂μ : ð2Þ

For atoms in a 3D lattice, we consider the unitless quantity
ðt=a3Þκ, where a is the lattice spacing. In the limit of
zero lattice depth, t → − a

2π

R π=a
−π=aðℏ2q2=2mÞ exp½iqa�dq ¼

ð2=π2ÞEr, where q is the quasimomentum, Er ¼ ℏ2π2=
2ma2 is the recoil energy, andm is the mass of the particles.
For a free Fermi gas with no interactions, the compress-
ibility at zero temperature is given by κ0 ¼ 3=2nEF, where
EF is the Fermi energy for each spin component. In this
Letter we consider the normalized compressibility ~κ,
defined as

~κ ≡ ðt=a3Þκ
½ð2π2=ErÞ=a3�κ0

¼ ð3π2Þ2=3
2

∂ ~n2=3
∂ðμ=tÞ ; ð3Þ

where ~n ¼ a3n.
We start by presenting theoretical results for ~κ, which

underlie the interpretation of our experimental results. In
Fig. 1 we show theoretical results for ~κ at various values of
T=t and U=t, obtained using determinantal quantum
Monte Carlo (DQMC) calculations [24,25] and a numerical

linked-cluster expansion (NLCE) [26–28] up to the eighth
order in the site expansion. These two methods comple-
ment each other and provide results over a wide range of
interactions and temperatures. While NLCE can reach
lower temperatures than DQMC calculations at large
U=t, the opposite is true at weak coupling. Figure 1 shows
that the theoretical compressibility diminishes at half filling
and larger U=t as the system enters the Mott insulating
regime, and at ~n ¼ 2, where a band insulator forms. In
addition, Fig. 1 demonstrates that at a temperature T ≤ t,
locally resolving the compressibility enables one to observe
the Mott regime for coupling strengths as low as U=t ∼ 8,
in the vicinity of the interaction strength that maximizes TN
[13–15], rather than requiring larger couplings [4,6,7].
In our experiment, we produce a two-spin component

degenerate Fermi gas of 6Li atoms in the jF ¼ 1=2;mF ¼
þ1=2i and jF ¼ 1=2;mF ¼ −1=2i hyperfine states, which
we label j↑i and j↓i, respectively. The apparatus has been
described previously [22,29]. Briefly, the spin mixture is
evaporated into a harmonic dimple trap and then loaded
into a simple cubic optical lattice. We control the total
number of atoms, N, by adjusting the final depth of the
dimple trap. The temperature of the atoms in the dimple is
measured by fitting the density distribution after time of
flight. We obtain T=TF ¼ 0.04� 0.02, independent of N
within the range of atom numbers considered for this Letter.
The optical lattice is formed by three retroreflected

red-detuned (1064 nm) Gaussian laser beams of depth
V0 ¼ 7Er. The lattice depth is calibrated via lattice
phase modulation spectroscopy, up to a systematic uncer-
tainty of �5%. Because of the Gaussian beam profiles, the
lattice depth decreases with distance from the center, which
results in increasing t and decreasingU=t. The lattice depth

FIG. 1 (color online). Normalized compressibility versus den-
sity for the homogeneous 3D Hubbard model, shown for various
interaction strenghts (a–d) and temperatures. The different curves
were obtained using DQMC (closed symbols) and NLCE (open
symbols). At half-filling, ~n ¼ 1, the compressibility vanishes for
strong interactions and low temperatures as the system enters the
Mott insulating regime.
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varies along the 111 body diagonals as VðrÞ ¼
V0 exp½−4r2=ð3w2

LÞ�, where V0 is the lattice depth at the
center, r is the distance from the center, and wL is the waist
(1=e2 radius) of the lattice beams. We make use of the
broad Feshbach resonance in 6Li at 832 G [30,31] to set the
on-site interaction strength, U.
The lattice confinement is compensated by the addition

of three blue-detuned (532 nm) Gaussian beams, which
overlap each of the lattice beams but are not themselves
retroreflected [22,32]. The overall confinement in the
lattice, which sets the density of the cloud, is adjusted
by changing the intensity of the compensation beams. We
create samples which appear spherically symmetric with a
slight adjustment of the intensity of the three independent
compensation beams. The average value of the compensa-
tion depth is set at 3.8Er, with a systematic �10% relative
error resulting from the calibration of wL and the com-
pensation beam waists, wC. The beam waists along each
axis are calibrated by measuring the frequency of radial
breathing mode oscillations [33]. We find, up to a �5%
systematic uncertainty, the lattice beam waists to be wL ¼
ð47; 47; 44Þ μm and the compensation beam waists to
be wC ¼ ð42; 41; 40Þ μm.
We measure the in situ column density distribution of the

atoms using polarization phase-contrast imaging [34]. This
technique can be used to image dense clouds, in contrast to
absorption imaging, which is limited to small optical
densities due to saturation. The imaging light was detuned
by −150 MHz from state j↑i (−74 MHz from j↓i), keep-
ing the phase shift across the cloud below π=5 to avoid
significant dispersive distortions of the image.
Figure 2 shows azimuthal averages of the column density

and density profiles; the latter are obtained from the former
using the inverse Abel transform (which assumes spherical

symmetry) [35,36]. Profiles for three different values of
U0=t0 (where U0 and t0 denote the values of the Hubbard
parameters at the center of the trap) are shown, along with
profiles calculated for our trap potential.
For the numerical calculations, we set T and the global

chemical potential, μ0, while the local values of U=t, T=t,
and μ=t are calculated using the known trap potential. Local
values of the density are obtained, within the LDA, by
interpolation of NLCE and DQMC results for a homo-
geneous system calculated in a (U=t; T=t; μ=t) grid.
Because T=t diminishes with r, the lowest value of T=t0
that can be calculated for the trap is limited to T=t0 ¼ 0.6.
The response of the central density of the cloud, ~n0, to

changes in atom number is a measure of the local
compressibility at the center of the trap. We obtain ~n0
by fitting the measured column density with the integral,R
~nðρ; zÞdz, of a flat-topped Gaussian function

~nðρ; zÞ ¼
8<
:

~n0 if ρ2 þ z2 < r20

~n0 exp

�
r2
0
−ρ2−z2

σ2

�
otherwise

; ð4Þ

where ρ is the distance from the imaging axis and the fit
parameters are ~n0, the flat-top radius, r0, and the Gaussian
1=e radius of the cloud’s wings, σ. In Fig. 3 we show ~n0 vs

FIG. 2 (color online). (a) Azimuthally averaged column density
(including both spin states) vs distance from the imaging axis ρ,
for different values of U0=t0. Data points represent the average of
eight individual realizations, with error bars corresponding to the
standard deviation. The lines in (a) are obtained by integrating the
density (calculated for N ¼ 2 × 105 atoms at T=t0 ¼ 0.6) along
the imaging axis. (b) Data points correspond to density profiles
extracted from the column densities using the inverse Abel
transform, where r is the distance from the center of the trap.
The lines in (b) show the density calculated for our trap along a
body diagonal of the lattice.

FIG. 3 (color online). Central density, ~n0 vs atom number for
various interaction strengths. The symbols show the average for a
set of 5 to 10 independent realizations, with error bars indicating
the standard deviation. The shaded regions are the results of
numerical calculations for our trap at T=t0 ¼ 0.6 (solid, green)
and 2.4 (crosshatched, gray), with the width of each region
corresponding to a �14% systematic uncertainty in the value of
U0=t0, arising from the �5% uncertainty in V0. The red line is
calculated at T=t0 ¼ 1.0, without considering the trap systemat-
ics. The calculated density becomes relatively insensitive to
uncertainties in U0=t0 for the two larger values of U0=t0, which
are deep in the Mott regime. For T=t0 ¼ 0.6 the total entropy per
particle, S=ðNkBÞ, is between 0.5 and 1.0 for the ranges of N and
U0=t0 shown in the figure. A temperature of T=t0 ¼ 2.4 is chosen
for comparison, as in this case S=ðNkBÞ is between 1.5 and 2.4,
which is similar to the range between 1.6 and 2.2 reported from
the analysis of a previous experiment [37].
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N for various values of the interaction strength U0=t0.
The appearance of a plateau in ~n0 around 1 is characteristic
of the Mott insulating regime. The persistence of a Mott
plateau at intermediate coupling, U0=t0 ¼ 11.1, indicates
that the temperature is at or below the tunneling energy, as
shown by comparison with the numerical results. A precise
temperature determination is prevented by the fact that
the density and other observables related to the charge
degrees of freedom are relatively insensitive to temperature
for T < t.
The local compressibility, ~κ, is obtained by taking

a derivative of the measured and calculated density
profiles as

~κ ¼ ð3π2Þ2=3
2

∂ ~n2=3
∂r

�∂ðμ=tÞ
∂r

�
−1
; ð5Þ

where the spatial derivative of the local chemical potential
depends only on the trap parameters. For the data, the
azimuthal average of the column density and the inverse
Abel transform are noisy at small radii, so, to avoid
excessive noise in the determination of the radial derivative
of ~n2=3, we restrict our analysis to r=a > 12. Figure 4
shows ~κ vs ~n for the experimental data and for density
profiles calculated at different temperatures. A decrease of
the compressibility near ~n ≈ 1, as expected for a Mott
insulator, is observed for U0=t0 ¼ 11.1 and 14.5. As with
the central density, the weak sensitivity of ~κ to T at lower
temperatures prevents us from making a precise temper-
ature measurement. However, the comparison of the data
with the numerical calculations at T=t0 ¼ 0.6, in both
Figs. 3 and 4, reveals that the results are consistent with our
previous measurement in the same system, where using

spin-sensitive Bragg scattering of light, we determined the
temperature to be T=t0 ¼ 0.58� 0.07 [22,38,39].
We have shown that the local compressibility of a two-

component Fermi gas in an optical lattice may be extracted
from in situ measurements of the column density. The data
presented here show evidence of Mott-insulating behavior
for interaction strengths as low as U0=t0 ¼ 11, close to
where TN is expected to be maximal, and where AFM
correlations were observed to be maximal for this system
[22]. A key achievement of this work is the combination
of experiments with two complementary theoretical
approaches which span the full range ofU=t and ~n required
to model the trapped atom data. As described in the
Supplemental Material [40], the use of DQMC and
NLCE in tandem provides reliable results over a range
of temperatures and interaction strengths beyond those
available previously [41–43].
Measurements of local compressibility in an optical

lattice, along with recently developed methods for detecting
magnetic order, can improve our understanding of the onset
of Mott-insulating behavior in the Hubbard model and can
answer open questions about its proximity to the AFM
phase in different coupling regimes. In addition, the local
compressibility can have important implications for under-
standing the nature and extent of the non-Fermi liquid state
of the 2D Hubbard model away from half filling [44–46] at
relatively high temperatures [47]. Finally, as has been
recently shown [48,49], sharp signatures of phase separa-
tion and stripe formation are evident in the compressibility,
raising the possibility that this central property of cuprate
superconductors, and of the Hubbard model, might be
accessible to this diagnostic.
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