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We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice.
We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which
leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The
anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this
theoretical picture by probing the dynamical instability of the system.
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Spin-orbit coupling (SOC), the interaction between a
particle’s spin and its mechanical motion, plays a promi-
nent role in condensed matter physics [1]. Even though the
spin-orbit interaction is usually relatively weak, it can be
important for bands close to the Fermi level [2]. The
combination of spin-orbit coupling with a periodic poten-
tial resulted in the prediction and discovery of topological
insulators [3,4], which have become a significant focus
of recent research [5,6]. Such spin-orbit-coupled lattice
systems, with the addition of strongly correlated many-
body effects, afford the possibility of studying new phase
transitions and realizing exotic spin models [7,8].
In cold atomic gases, spin-orbit coupling can be imple-

mented by Raman coupling of atomic hyperfine states
[9–14]. The tunability of the Raman coupling parameters
results in a flexible experimental platform to explore spin-
orbit-coupled physics [15–18]. The spin-orbit coupling can
strongly modify the single-particle dispersion relation of a
quantum gas. The resulting novel band structures [9,19]
give rise to many interesting phenomena due to the
competition between spin-orbit coupling and atomic inter-
actions (for recent reviews see, e.g., [20,21]).
In this Letter, we perform a detailed study of a Bose-

Einstein condensate (BEC) with spin-orbit coupling loaded
into a shallow one-dimensional optical lattice.
The effects of a stationary lattice can be understood by

repeatedly displacing the single-particle SOC spectrum
along the momentum axis by integer multiples of the
reciprocal lattice vector. Where lines of displaced spectra
cross, gaps open up. The resulting Bloch spectrum shows
interesting features. For example, in a certain parameter
regime, the lowest Bloch band can be flat [22]. If the lattice
moves, the Bloch spectrum becomes complicated due to the
lack of Galilean invariance in the presence of the spin-orbit
coupling [23]. We develop an effective dispersion relation
to depict the joint effect of spin-orbit coupling and the
translating lattice. The breaking of Galilean invariance is
naturally incorporated in the effective dispersion by its
asymmetry with respect to different directions of motion.

The effective dispersion is probed experimentally by the
observation of the dynamical instability of the condensate.
The weak repulsive atomic interactions not only move the
single-particle effective dispersion slightly upward [24],
but also cause dynamical instability of certain Bloch states.
A homogenous single component BEC with repulsive
interactions is always dynamically stable. However, when
loaded into an optical lattice, the BEC features dynamical
instabilities when the speed of the translating lattice is larger
than a critical value [25–28]. The instabilities are charac-
terized by an initial exponential growth of excitations in the
BEC, heating, and ultimately, loss of atoms from the BEC.
They aremost significant in thevicinity of a band gap,which
provides a mechanism to probe the band gap structure in an
experiment. In our spin-orbit-coupled lattice BEC, we
characterize the strengths of the instabilities by the loss rate
of condensate atoms and find that the strengths depend on
both the lattice speed and direction of motion. The regimes
with most significant instability are used to identify band
gaps present in the effective dispersion. The directional
dependence of the instabilities corroborates the asymmetry
of the effective dispersion. Our experiments provide a direct
observation of the lack of Galilean invariance in the spin-
orbit-coupled systems [23,29]. We compare our results with
a Bogoliubov analysis and find good agreement.
We begin by providing a brief description of our

experimental system. Spin-orbit coupling in BECs can
be induced by Raman dressing schemes [9–14], and the
geometry of our experiment is shown schematically in
Fig. 1(a). The Raman lasers couple the j1;−1i ¼ j↓i and
j1; 0i ¼ j↑i states of a 87Rb BEC in the F ¼ 1 hyperfine
manifold. A 10 G bias magnetic field causes a sufficiently
large quadratic Zeeman splitting such that the j1;þ1i
state is far from resonance. Hence, the system realizes an
effective spin-1=2 system [30]. The system without the
one-dimensional lattice is modeled by the single-particle
Hamiltonian HSOC ¼ p2

z=2mþ γpzσzþℏδσz=2þℏΩσx=2
[9]. Here m is the atomic mass and fσig are the Pauli
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matrices. The spin-orbit coupling strength is γ ¼ ℏkRam=m,
where kRam is thewavevector of the Raman beams projected
onto the z direction, kRam ¼ 2π=ðλRam

ffiffiffi

2
p Þ with

λRam ≈ 789 nm. δ is the detuning, and Ω is the Rabi
frequency. A typical band structure for our parameters is
shown in Fig. 1(c), where the band energies are

E�ðkzÞ ¼ ðℏ2k2z=2mÞ � ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½γkz þ ðδ=2Þ�2 þ ðΩ2=4Þ
p

.
Here, ℏkz is the quasimomentum in the spin-orbit direction.
Two additional laser beamswith λlat ≈ 1540 nm and small

frequency difference Δν generate the translating optical
lattice. The lattice beams are collinear with the Raman lasers
such that klat¼2π=ðλlat

ffiffiffi

2
p Þ. The single-particle Hamiltonian

of the spin-orbit-coupled lattice system is Hsp ¼ HSOC þ
U0 sin2½klatðz − vtÞ�. The lattice velocity v ¼ πΔν=klat
can be adjusted by varying the frequency difference
Δν between the two lattice beams. For the experiments
presented in this Letter, U0 ¼ −1.4Elat, where Elat ¼
ℏ2k2lat=2m. The presence of the optical lattice extends
the spin-orbit-coupled bands in Fig. 1(c) to the Bloch
spectrum in Fig. 1(d). In the repeated zone scheme, the
Bloch spectrum is constructed through copies of the spin-
orbit bands shifted by integers of the reciprocal lattice vector
2nℏklat in quasimomentum and 2nℏklatv in energy, where
n ¼ 0;�1;�2;…. Gaps open in the Bloch spectrum wher-
ever intersections between E�ðkzÞ and E�ðkz þ 2nklatÞ −
2nℏklatv occur. The width of the gap depends on the lattice
depthU0 and on the overlap between the spin composition of
the states coupled by the lattice beams. Typically, the gap
corresponding to jnj is larger than that corresponding to
jnj þ 1. This is evident inFig. 1(d),where the energygaps are
largest for jnj ¼ 1 in both the lower as well as the upper
dressed bands. Physically, the band gaps can be understood
from multiphoton resonances in which the momentum of
the atoms can be changed coherently by multiples of the
reciprocal lattice vector 2nℏklat.
Before describing the experimental results, it is instruc-

tive to introduce an effective band structure picture. As
the translating optical lattice potential is time dependent
in the lab frame, it is convenient to go into the frame in
which the optical lattice is stationary. This results in
the Hamiltonian HM

sp ¼ p2
z=2m þ γpzσz þ ðℏδ=2Þσzþ

U0sin2ðklatzÞ − vpz. With a simple substitution, P ¼
pz −mv, one obtains H̄M

sp¼P2=2mþγPσzþðδþ
2mγv=ℏÞðℏ=2ÞσzþðℏΩ=2ÞσxþU0sin2ðklatzÞ (where we
have left out a constant energy term mv2=2). In addition

FIG. 1 (color online). Spin-orbit-coupled 87Rb BEC in a one-
dimensional optical lattice. (a) Experimental geometry. The BEC
(yellow hashed) is confined in an optical dipole trap (solid green).
Two sets of laser beams intersect the BEC at a 45° angle,
generating the spin-orbit coupling (white arrow) and a translating
optical lattice (striped arrows). (b) Raman coupling scheme in the
F ¼ 1 manifold of 87Rb with detuning δ. (c) Typical band
structure E�ðkzÞ of HSOC with the color (gray scale) indicating
the spin polarization, defined as the relative population difference
of the bare spin components ðjψ↑j2 − jψ↓j2Þ=ðjψ↑j2 þ jψ↓j2Þ.
The BEC is prepared at the minimum of the lower band (circle).
The arrows indicate a possible two-photon coupling due to the
lattice translating with negative (dashed) or positive (solid)
velocity. (d) Bloch spectrum of a stationary optical lattice in
the presence of spin-orbit coupling. The lines correspond to
E�ðkzÞ and E�ðkz þ 2nklatÞ, where n is an integer. The spin
composition is encoded in the line color (gray scale). The
parameters used for (c) and (d) are ℏδ ¼ 1.6ERam, ℏΩ ¼
2ERam with the additional parameters U0 ¼ −1.4Elat and
v ¼ 0 for (d).

FIG. 2 (color online). Effective band structure as a function of
the lattice velocity. The thick green lines indicate the position at
which the BEC is placed in the experiments. (a) BEC with
spin-orbit coupling and ℏδ ¼ 1.6ERam as shown in Fig. 3(b).
(b) BEC without spin-orbit coupling as in Fig. 4. The numbers
in the graphs indicate the order of the associated multiphoton
resonances.
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to the lattice potential, H̄M
sp is nontrivially different from

HSOC due to the term δþ 2mγv=ℏ, which can be inter-
preted as an effective detuning of the Raman beams. This
term depends on the frame velocity v and signifies the
broken Galilean invariance of the spin-orbit-coupled BEC.
Physically, this arises because the Raman lasers generating
the spin-orbit coupling provide a fixed frame of reference.
In our experiments, we observe the behavior of the BEC

by varying the lattice velocity. An effective dispersion
relation should thus be calculated as a function of the lattice
velocity v. The BEC is initially assumed to be in the ground
state of the spin-orbit-coupled band E−ðkzÞ of HSOC with a
finite quasimomentum, kmin, which is approximately con-
served when the optical lattice is introduced [31].
Therefore, during the experiment, the quasimomentum
kmin is fixed. The effective dispersion, EMðkmin; vÞ, can
be taken from the Bloch spectrum of HM

sp at kmin. The
results are shown in Fig. 2(a) for ℏδ ¼ 1.6ERam,
ℏΩ¼2ERam, and U0¼−1.4Elat, where ERam¼ðℏkRamÞ2=
2m. An obvious feature of the effective dispersion relation

is its asymmetry with respect to a sign change of the lattice
velocity. The physical origin of this asymmetry is the
breaking of Galilean invariance.
From the effective dispersion, we can trace the location of

the BEC if the lattice velocity varies. When the spin-orbit-
coupled BEC is adiabatically loaded into the translating
lattice, it occupies a state near the lower spin-orbit-coupled
bandEM

− ðkmin; vÞ [thick green line in Fig. 2(a)]. We label the
avoided crossings along the trace by integers 2n that indicate
the photon processes involved, EM

− ðkmin; vÞ ¼ EM
− ðkmin �

2nklat; vÞ. Resonances occurring between the lower and
upper spin-orbit bands [EM

− ðkmin;vÞ¼EMþ ðkmin�2nklat;vÞ]
are denoted by an underlined number 2n. It is interesting to
note that the ordering of the band edges is not straightfor-
ward, and the positions of the band edges are not equally
spaced. The exact ordering and positions strongly depend on
the chosen parameters δ, Ω, and the ratio klat=kRam. For
comparison, Fig. 2(b) presents the analogous band structure
for a BEC in a translating lattice but without spin-orbit
coupling. As is well known in this case, the effective band

FIG. 3 (color online). Dynamical instability of the spin-orbit-coupled BEC as a function of lattice speed with
(a)–(d) ℏδ=ERam ¼ f3.2; 1.6; 0.8; 0.4g, respectively. The strength of the dynamical instability is measured experimentally by the loss
rate of atoms in the BEC (upper panels), while theoretically it is represented by the largest growth rate of Bogoliubov excitations (lower
panels). Each resonance (vertical line) is labeled with the number of photons generating the band edge, with underlined integers
denoting resonances between the upper and lower spin-orbit bands. The solid red triangles (open blue circles) indicate the positive
(negative) direction of the lattice motion.
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structure and the BEC location (thick green line) are
symmetric with respect to the direction of motion, the band
edges are equally spaced, and the effective dispersion
relation recovers the Bloch spectrum.
The avoided crossings of the effective dispersion are

experimentally probed by the observation of dynamical
instability of the BEC. We measure the loss spectra for the
system as a function of the velocity of the optical lattice.
Our experiments begin with a nearly pure 87Rb BEC in the
ground state in the presence of spin-orbit coupling with
ℏΩ ¼ 2ERam before ramping up a translating optical lattice
to a lattice depth of U0 ¼ −1.4Elat [30]. We hold the BEC
in the lattice potential for 100 ms, during which excitations
caused by instabilities can grow and population is lost from
the BEC. The experimental results for the loss rate as a
function of the lattice velocity, for four different values of
the Raman detuning δ, are plotted in the upper panels of
Figs. 3(a)–3(d). In the absence of Galilean invariance, we
must differentiate between the two translating directions for
the optical lattice. In Fig. 3, we plot negative (positive)
velocities in dashed open blue circles (solid red triangles),
corresponding to the dashed (solid) arrows in Fig. 1(c).With
this convention, a lattice translating in the positive direction
couples to states that resemble free particles, while a lattice
translating in the negative direction couples to states that are
strongly modified by the spin-orbit coupling. For compari-
son, we have also performed these measurements without
spin-orbit coupling (see Fig. 4) and for this case, find
agreement with prior experimental work [27].
We model our experiment using the Bogoliubov–de

Gennes (BdG) equations based on a one-dimensional
mean-field description of a homogeneous BEC [30]. We
identify the quasiparticle mode with the largest imaginary
part of the energy, corresponding to the largest initial
growth rate, and plot this rate as a function of velocity in the
lower panels of Figs. 3(a)–3(d). The theoretical results
provide a good understanding of the experimental mea-
surements [30]. While the theoretically calculated growth
rates are different quantities than the experimental loss rates
presented in the upper panels of Fig. 3, they have
previously been found to be a reasonable indication of
the strength of dynamical instability [27]. Both the exper-
imental data and the numerical results demonstrate that the
critical speed for the onset of the dynamical instability is
different for the two directions of motions. This is par-
ticularly evident in the experimental and numerical results
for the smaller detunings of ℏδ ¼ 0.8ERam and ℏδ ¼
0.4ERam in Figs. 3(c) and 3(d) near v ¼ �0.5 mm=s, where
the critical velocity is smaller for the negative direction.
Above the critical velocity, the dynamical instability is
most significant in the vicinity of the band edges. Loss
occurs in all higher bands as well, but the loss rate in higher
bands is significantly reduced.
The dynamical stability of the BEC is also quite different

for the two directions of motion. In Figs. 3(a)–3(d), the

behavior of the loss and growth rates for the positive
direction of motion (red solid triangles) is very similar to
that of the case without spin-orbit coupling shown in Fig. 4.
However, in the negative direction of motion (blue open
circles), the behavior is strongly modified. For example, in
Fig. 3(a) for ℏδ ¼ 3.2ERam, a pronounced additional loss
feature appears centered around v ¼ 9 mm=s, shifting to
smaller velocities for smaller δ in Figs. 3(b)–3(d). This
feature is caused by the two-photon resonance 2 between
EM
− ðkmin; vÞ and EMþ ðkmin − 2klat; vÞ (i.e., the lattice reso-

nance between the lower and upper spin-orbit bands). For
comparison, the large loss feature near v ¼ 2 mm=s is due
to the two-photon resonance within the lowest spin-orbit
band. Even though both of these loss features arise from
two-photon couplings, the 2 feature is weaker. This is in
part due to the reduced overlap of the spin composition
between EM

− ðkmin; vÞ and EMþ ðkmin − 2klat; vÞ. For the pos-
itive direction of motion of the lattice in Figs. 3(a)–3(d), the
2 resonance between EM

− ðkmin; vÞ and EMþ ðkmin þ 2klat; vÞ
occurring at large velocity is suppressed by the small
overlap in spin composition for our chosen parameters.
For example, with ℏδ ¼ 1.6ERam, such a resonance occurs
at v ¼ 21.6 mm=s but the modification to the Bloch
spectrum is negligible. Another loss feature near v ¼
4.5 mm=s in Fig. 3(a) in the positive direction corresponds
to the four-photon resonance and is shifted to smaller
velocities in the negative direction. In the experimental
results for the negative direction, it cannot be differentiated
from the dominant 2 band edge and is diminished due to the
smaller overlap of the spin compositions.
In conclusion, we have studied the rich dispersion

relation of a spin-orbit-coupled BEC in a weak optical
lattice by probing the losses of the system as a function of

FIG. 4 (color online). Dynamical instability of the BEC without
spin-orbit coupling as a function of lattice velocity. The strength
of the dynamical instability is measured experimentally by the
loss rate of atoms in the BEC (upper panels), while theoretically,
it is represented by the largest growth rate of any Bogoliubov
excitation (lower panels). Each resonance (vertical line) is labeled
with the number of photons generating the band edge.
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lattice velocity. Our experiment provides a direct observa-
tion of the breaking of Galilean invariance in the presence
of spin-orbit coupling. Our spin-orbit-coupled lattice BEC
affords an important platform to experimentally investigate
the effect of spin-orbit coupling for the superfluid–to–Mott-
insulator transition and the magnetic physics in spin-orbit-
coupled Mott-insulator phases [32–34].
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