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Experiments show that macromolecular crowding modestly reduces the size of intrinsically disordered
proteins even at a volume fraction (ϕ) similar to that in the cytosol, whereas DNA undergoes a coil-to-
globule transition at very small ϕ. We show using a combination of scaling arguments and simulations that
the polymer size R̄gðϕÞ depends on x ¼ R̄gð0Þ=D, where D is the ϕ-dependent distance between the

crowders. If x ≲Oð1Þ, there is only a small decrease in R̄gðϕÞ as ϕ increases. When x ≫ Oð1Þ, a
cooperative coil-to-globule transition is induced. Our theory quantitatively explains a number of
experiments.
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The importance of crowding in biology is gaining
increasing appreciation because of the realization that
cellular processes occur in a dense medium containing a
polydisperse mixture of macromolecules. A number of
studies have been performed to understand the role crowd-
ing particles play in inducing structural transitions in
disordered chiral homopolymers [1,2], protein [3–5] and
RNA folding [6–8], gene regulation through DNA looping
[9], and genome compaction [10]. Some of the conse-
quences of crowding can be qualitatively explained using
the depletion interaction introduced by Asakura and
Oosawa (AO) [11]. In the AO picture, the crowding
particles, treated as hard objects, vacate the interstitial
space in the interior of the macromolecule to maximize
their entropy. As a result, an osmotic pressure due to
crowders reduces the size of the macromolecule.
The predictions based on the AO theory rationalize the

impact of crowding effects on synthetic and biological
polymers qualitatively provided that only excluded vol-
ume interactions between the crowding particles and
the macromolecules dominate. Even in this limit two
questions of particular importance for experiments on
biopolymers require scrutiny. (i) What is the extent of
crowding-induced compaction in finite-sized polymer
coils? These systems are minimal models for unfolded
and intrinsically disordered proteins (IDPs), and in some
limits (the random loop model) also provide a useful
caricature of chromosome folding. (ii) For polymers with
N monomers, what is the dependence of the average
radius of gyration, R̄gðϕÞ [≡hR2

gðϕÞi1=2], as a function of
the volume fraction ϕ and the size of the crowders? It is
important to answer these questions quantitatively to
resolve the seemingly contradictory conclusions reached
in recent experiments.

Here, we answer these questions using a combination of
scaling arguments and computer simulations. The two
length scales that determine the degree of polymer com-
paction in solution, with crowding particles interacting with
each other and the polymer via hard repulsions, are R̄gð0Þ
(the size of the coil at ϕ ¼ 0), and the average distance, D,
between the crowders. We propose a scaling relation to
predict the dependence of R̄gðϕÞ on ϕ based on the
expectation that when D≲ R̄gð0Þ, the osmotic pressure
acting on the polymeric chain should reduce the polymer
size. If correlations between the crowding particles are
negligible, as explicitly shown here using simulations for ϕ
as large as 0.4, the maximum ϕ in the cytosol, then a
scaling ansatz would suggest R̄gðϕÞ ¼ R̄gð0ÞfðxÞ, where
fðxÞ is a function of the dimensionless variable
x ¼ R̄gð0Þ=D. For a given ϕ,D ≈ ð4π=3Þ1=3σcϕ−1=3, where
σc is the radius of a spherical crowding particle and thus
x ¼ ð3=4πÞ1=3λϕ1=3, where λ≡ R̄gð0Þ=σc. The form of
fðxÞ is difficult to calculate because of correlations in
the fluidlike crowding particles [12]. Nevertheless, we
anticipate distinct scenarios in two limits of x. (i) When
x ∼Oð1Þ [D ∼ R̄gð0Þ], compaction of the coil should occur
without altering the chain statistics, R̄gðϕÞ ¼ lϕN3=5 ∼
R̄gð0Þ ¼ l0N3=5, where l0ðlϕÞ are the Kuhn lengths in
the absence (presence) of crowding particles; thus
fðxÞ ∼Oð1Þ, implying that R̄gðϕÞ should depend weakly
on ϕ. (ii) In contrast, when x ≫ Oð1Þ [D ≪ R̄gð0Þ], we
expect osmotic pressure to induce the collapse of the
polymer coil to a globule so that R̄gðϕÞ ∼ N1=3. These
arguments suggest that the value of x controls the polymer
size (N ≫ 1) in a crowded environment where only the
excluded volume interactions are relevant.
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With the two scenarios, expressed in terms of R̄gð0Þ and
D as a guide, we performed Langevin simulations in
explicitly modeled spherical crowding particles with vary-
ing sizes, σc, and for a range of ϕ. Despite considerable
efforts to predict the effects of crowders on polymer size
[13–17], it is difficult to accurately include the crucial
effects ofmultiparticle correlations among crowdingparticles
or a strong correlation of monomers in a polymer chain
(stiff or flexible) using phenomenological analytic theories
[12,18–20] or microscopic formalism [21]. To this end, we
used a bead-spring model for the polymer and soft-sphere
potentials to model interactions between the explicitly mod-
eled crowder and the beads on the polymer [22]. Because of
interactions among polymer segments and crowders, the
effects of semiflexibility and the polyelectrolyte nature of
the polymer are important on the local scale≲lp (persistence
length) [26]. However, in the length scale of our interest
(≫ lp), the self-avoiding bead-spring model suffices to
capture the global characteristics of DNA. In this model,
local interactions can be accommodated by a renormalization
of the strength of the volume exclusion. Indeed, such models
have been used to gain insights into chromosome folding
[27]. Two variations of the random coils, one for IDPs and the
other for DNA, are used to cover a range of x values.
When exploring compaction due to large crowders

½λ ∼Oð1Þ�, if D ∼ R̄gð0Þ, there ought to be only a modest
reduction in the polymer size because the statistics of the

polymer conformations [as assessed by the distribution of
RgðϕÞ,P½RgðϕÞ�] are essentially unchanged. The reduction in
R̄gðϕÞ becomes greater with increasing λ [Fig. 1(a)].
However, the extent of compaction is only on the order of
5%–8% for λ < 2.0 [Fig. 1(a)]. At λ ¼ 3.8, as ϕ increases
from 0 to 0.4, P½RgðϕÞ� clearly show a gradual shift towards
smaller values of Rg [Fig. 1(b)]. The RgðϕÞ distributions,
plotted in terms of t ¼ RgðϕÞ=R̄gðϕÞ for varying λ values,
collapse onto a single universal curve [Fig. 1(c)], correspond-
ing to that of a self-avoiding polymer [28,29]:

PðtÞ ¼ N e−ðbtÞ−15=4−ðbtÞ5=2 ; ð1Þ
whereb andN are the parameters [22]. The radial distribution
functions (RDFs) of crowders from the center of the polymer
[30] [Fig. 1(d)] show that the crowders are depleted from
the space occupied by the polymers. A snapshot from the
simulation [Fig. 1(a), inset] shows that when D ∼ R̄g, the
polymer chain retains its shape,with onlymodest compaction
in the space between the crowders.
We next examine the coil-globule transition due to small

sized crowders (λ ≫ 1). When the size of the crowders is
decreased there is a dramatic effect on the polymer size if
ϕ > ϕc, where ϕc is a critical volume fraction for the coil-
globule transition. Figure 2(a) shows the R̄gðϕÞ of a self-
avoiding walk (SAW) polymer with N ¼ 50 for a minimal
model of chromosome folding with crowders [10], which
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FIG. 1 (color online). Crowding effect on the conformation of
a SAW chain (N ¼ 100) for λ ∼Oð1Þ. (a) R̄gðϕÞ as a function of
crowder volume fraction (ϕ). The λ values are shown in different
colors. A snapshot of the SAW chain and the crowding particles
on the top is for λ ¼ 1.9 at ϕ ¼ 0.3. (b) Distribution of Rg,
P½RgðϕÞ� at λ ¼ 3.8. (c) Collapse of P½RgðϕÞ�, with ϕ ¼ 0.1–0.4
and λ ¼ 0.9–6.9, onto a universal curve [Eq. (1), with b ¼ 1.120
andN ¼ 13.69] obtainedby rescalingRgðϕÞ by R̄gðϕÞ justifies that
the statistics of thepolymer coil does not change.The corresponding
result for the end-to-end distance is in [22]. (d) RDF of crowders
from the center of the SAW chain at varying ϕ.
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FIG. 2 (color online). Dramatic compaction of the SAW chain
(N ¼ 50, λ ¼ 47). (a) R̄gðϕÞ=R̄gð0Þ of the SAW chain (the green
square). The line with red circles is from Ref. [10], which
simulated the effect of macromolecular crowding on the SAW
polymer implicitly by using the effective depletion AO potential
between two sites on a polymer. An ensemble of polymer
conformations at each ϕ and a snapshot of the simulation at
λ ¼ 47 and ϕ ¼ 0.2 are shown at the top. (b) P½RgðϕÞ� at λ ¼ 3.8.
(c) Shape parameter (S) and asphericity (Δ) of the SAW chain as
a function of ϕ. (d) RDF of crowders from the center of the
position in the SAW chain at varying ϕ.

PRL 114, 068303 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 FEBRUARY 2015

068303-2



gives λ ¼ 47. When ϕ increases to 0.3, R̄gðϕÞ reduces by
70% from the original size R̄gð0Þ. The theoretical prediction,
R̄gðϕÞ=R̄gð0Þ ≈ ð1 − cλϕÞ1=5 [31], where c is a constant,
accounts for the simulation data in Fig. 2(a) for small ϕ ≈ 0.
We note parenthetically that if the interaction between the
beads were represented implicitly based on simulations of
small N, as has been done previously [10], the dependence
of R̄gðϕÞ on ϕ is qualitatively incorrect [the red circles in
Fig. 2(a)].
The importance of the parameter λ as a key determinant

of the coil size can also be appreciated by comparing the
results in Figs. 1 and 2. In particular, PðyÞ and the RDFs
with λ ¼ 47 (Fig. 2) differ qualitatively from those with
λ¼ 3.8 (Fig. 1). For λ¼ 47, P½RgðϕÞ=R̄gð0Þ�, with ϕ ¼ 0.2,
is peaked sharply at RgðϕÞ=R̄gð0Þ ≈ 0.25 [Fig. 2(b)],
whereas at lower ϕ the peak is at ≈1, and the rather abrupt
coil-globule transition is striking given the small size of
the polymer. RDFs for λ ¼ 3.8 [Fig. 1(d)] indicate that the
crowders are essentially depleted from the region in which
the polymer is localized, for all ϕ. In sharp contrast, for
λ ¼ 47 [Fig. 2(d)] at ϕ < 0.15, there is a substantial
probability that the crowders are in the vicinity of the
polymer. Only after the coil-globule transition occurs at
ϕ ¼ ϕc ≈ 0.15–0.2, the crowders are fully excluded from
the interior of the polymer r≲ R̄g, and, effectively, no
crowder particle is present in the interior of the collapsed
polymer at ϕ ≥ 0.2 [Fig. 2(d)].
To ascertain that the chain indeed forms a collapsed

globule, we calculated the shape (S) and the asphericity (Δ)
parameters [32,33]. Both quantities, which measure the
anisotropy of an object, are identically zero for a perfect
sphere. The ensembles of SAW configurations [Fig. 2(a)]
change from a prolate at low ϕ [34,35] to a spherical shape
as ϕ increases. The coil-globule transition, which has a
tricritical character [31,36], is relatively sharp [Fig. 2(c)],
mirroring the decrease in R̄gðϕÞ [Fig. 2(a)]. At ϕ ¼ 0.3,
S ¼ 0.01 and Δ ¼ 0.07 indicate that the polymer coil is
collapsed to an almost perfect spherical globule.
We now turn to the critical ϕ for a coil-globule transition.

The parameter x is a useful measure for assessing whether a
polymer of a given length in the presence of crowders of
a specific size would undergo a coil-globule transition.
We estimate the critical ϕ (ϕc) of crowders for a given
parameter λ by using xc ¼ ð3=4πÞ1=3λϕ1=3

c :

ϕc ¼
�
4π

3

��
xc
λ

�
3

: ð2Þ

We estimate xc ≈ 17 because the polymer collapses at
ϕc ≈ 0.2 for λ ¼ 47. The specific value of xc should, in
principle, vary with N and the nature of interactions in the
ternary system of the polymer, crowding particles, and
solvent. Nevertheless, the estimated xc is a guide to
obtaining an approximate estimate of ϕc, and we show

below that it can be used to understand a number of
experiments. Because of the restriction that ϕc < ϕmax

c ≈
0.74 (close packing) and the weak dependence of x on ϕ, it
follows from Eq. (2) that as λ decreases, ϕc has to increase
greatly in order for the crowding particles to induce coil-
globule transition. Therefore, for a small λ, one can only
expect a modest reduction in R̄gðϕÞ [Fig. 1(a)].
When applied to experiments, the combination of the

scaling-type arguments and our simulation results offers
a unifying framework for understanding experimental
results on the effects of crowding on two entirely different
classes of biopolymers.1. DNA: Since the discovery by
Lerman [37], it has been noted that addition of polyethy-
leneglycol (PEG) to a coiled DNA induces cooperative
coil-globule transition [16]. Because N ≫ 1 for DNA,
collapse transition is accompanied by a substantial volume
change (N3ν → N1). For T4-DNA, whose contour length
Lc ≈ 3.27 × 105 nm and lp ≈ 50 nm [16], R̄gð0Þ≈
lpðLc=lpÞ3=5 ≈ 0.97 × 105 nm, and σc≈0.195×P0.583 nm
(with P being the polymerization index) for PEG [22],
λ ≈ 4.97 × 105 × P−0.583, which leads to ϕc ≪ 1 for almost
any P. Our theory shows that only a small amount of PEG
is sufficient to induce the coil-globule transition of DNA of
a genomic size, as has been established experimentally.
2. Intrinsically disordered proteins (IDPs): There has been
considerable interest in the effects of crowding on IDPs,
which have critical functional roles, especially in eukar-
yotes [38]. Based on recent single molecule [39] and small
angle neutron scattering [40] experiments, it has been
concluded that for certain IDPs, crowding induces a very
small (∼5%) reduction in size, whereas for others the
effects are larger (∼30%). These results—which apparently
cannot be explained by scaled particle theory, which only
accounts for excluded volume interactions—have led to
adhoc explanations that are difficult to rationalize [40].
Our theoretical results for neutral polymer coils nearly
quantitatively account for the experimental findings for
those IDPs with relatively small net charge per residue, for
which the polymer model used here is most appropriate.
A typical IDP with N ≈ 100 has R̄gð0Þ ≈ 3 nm from
R̄gð0Þ ≈ 0.193 × N0.598 [41]. For an IDP in the presence
of PEG [39], we estimate λ ≈ 15.4 × P−0.583; thus,
ϕc ≈ ð4π=3Þ × ðxc=15.4Þ3 × P1.75. If xc is large, as is
required for inducing globule formation, ϕc would be
greater than ϕmax

c , even for small PEGs with P ¼ 1. For
PEG 6000 (P ≈ 136) [39], λ ≈ 0.88 and ϕc > ϕmax

c .
Therefore, our first conclusion is that there ought to be
no coil-globule transitions in IDPs in Ref. [39] using
neutral crowders if one assumes the IDP as a self-avoiding
polymer. This is in accord with experiments probing the
crowding effects on five IDPs [39,40].
A more precise comparison with experiments can be

made using our results for those IDPs with small net
charge for which coil description is most appropriate. We
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consider the activator for thyroid hormones and retinoid
receptors activator (ACTR), and the N-terminal domain
of the HIV-1 integrase (IN) with PEG as the crowding
agent [39], and bacteriophage λN with (nearly folded but
likely hydrated) bovine pancreatic tyrosin inhibitor
(BPTI) and equine metmyoglobin as crowding agents
[40]. Figure 3 shows the RgðϕÞ of the IDPs. The excellent
agreement between theory and experiments with no
adjustable parameters shows that λ controls the size.
Thus, for these IDPs the present analysis, which relies on
excluded volume as the dominant factor, suffices.
Recently, other experimental studies have also noted that
the size of unfolded proteins is insensitive to varying
concentrations of crowders such as dextran, Ficoll,
polyvinylpyrrolidone (PVP), bovine serum albumin
(BSA), and lysozyme [40,42,43], leading the authors
to suggest that attractive crowder-protein interactions,
which compensate for the effects of excluded volume
interactions, are at play. However, the λ calculated for the
systems in these studies all lie in the range of λ ≈Oð1Þ,
and hence x ∼ 1, where the effect of neutral crowders on
protein size is expected to be minimal. Thus, our theory of
neutral crowders based on two competing length scales,
R̄gð0Þ and D, fully explains the minimal effect of macro-
molecular crowding on IDPs in Refs. [39,40] and proteins
in Ref. [42].
We conclude with a few additional remarks. (i) It is

tempting to use the depletion potential obtained for a small
N as a potential of mean force (PMF) for simulating a
polymer with large N. Kim et al. [10] obtained an effective
ϕ-dependent PMF between two beads of a small polymer in
a crowded environment and used the resulting PMF to
simulate the crowding effect on the compaction of a long
polymer. As shown in Fig. 2(a) (the red circles), they found

a slight nonmonotonic turnover of R̄gðϕÞ at ϕ ¼ 0.2 and
ascribed their finding to the ϕ-dependent repulsive barrier
in the depletion potential. Their argument is that the energy
cost to squeeze out the crowders from the space between
the monomers increases with ϕ. Our study, which simulates
the SAW polymer in explicit crowding particles with the
identical parameters used in Ref. [10], shows a monotonic
reduction of R̄gðϕÞ [the green squares, Fig. 2(a)]. Crowding
effects on chain conformations for long polymers require
that the crowders be explicitly treated at all scales.
(ii) Based on the finding that the extent of the crowding-
induced polymer compaction or collapse is determined by
the parameter x ½¼ R̄gð0Þ=D�, we propose a phase diagram
(Fig. 4), which should serve as a useful guide in anticipat-
ing the results of crowding experiments on biopolymers.
Our estimate of x explains that a small amount of PEG
suffices to induce coil-globule transition in DNA, whereas
an IDP whose size is N ≈ 100 would not display collapse
transition even at high ϕ. (iii) For IDPs with highly charged
residues, the polymer model used here is inadequate
because electrostatic interactions as well as potential
correlations between charged residues are not taken into
account. It is likely that if a minimal polymer model
for such systems is constructed, which will naturally
involve an additional length scale due to polyampholyte
effects [44,45], then scaling theories along the lines used
here will provide insights into the effect of crowding
particles.
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FIG. 3 (color online). Compaction of IDPs, ACTR, and IN in an
increasing volume fraction of PEG 6000 [39], and λN in BPTI or
metmyoglobin (Mb) [40]. To compare experiments, we super-
imposed our simulation results with N ¼ 100 and λ ¼ 0.9, 1.9,
3.8. The compaction of IN, λN (BPTI), and λN (Mb) is described
by λ ¼ 0.9, and ACTR by λ ¼ 3.8.

FIG. 4 (color online). Diagram of a polymer collapse which
varies depending on the value of parameter x. For x ∼Oð1Þ < xc,
the size of the polymer decreases with an increasing ϕ while
maintaining its coil statistics (R̄g ∼ N3=5). By contrast, for
xc ≪ x, the polymer undergoes a coil-globule transition. ϕc
greater than the volume fraction of close packing is not accessible
(ϕ≳ ϕmax

c ). The difference between the crowding-induced
dynamics in the two regimes of x is illustrated with IDP and
T4-DNA.
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